• Title/Summary/Keyword: GPS/INS/AT Integration

Search Result 14, Processing Time 0.02 seconds

A Study of High Precision Position Estimator Using GPS/INS Sensor Fusion (GPS/INS센서 융합을 이용한 고 정밀 위치 추정에 관한 연구)

  • Lee, Jeongwhan;Kim, Hansil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.159-166
    • /
    • 2012
  • There are several ways such as GPS(Global Positioning System) and INS (Inertial Navigation System) to track the location of moving vehicle. The GPS has the advantages of having non-accumulative error even if it brings about errors. In order to obtain the position information, we need to receive at least 3 satellites information. But, the weak point is that GPS is not useful when the 혠 signal is weak or it is in the incommunicable region such as tunnel. In the case of INS, the information of the position and posture of mobile with several Hz~several hundreds Hz data speed is recorded for velocity, direction. INS shows a very precise navigational performance for a short period, but it has the disadvantage of increasing velocity components because of the accumulated error during integration over time. In this paper, sensor fusion algorithm is applied to both of INS and GPS for the position information to overcome the drawbacks. The proposed system gets an accurate position information from experiment using SVD in a non-accessible GPS terrain.

Organization of integrated navigation system for coastal and offshore fishing boat (연근해 어선 통합항법시스템의 구축)

  • Shin, Hyeong-Il;Bae, Mun-Ki;Lee, Dae-Jae;Kang, Il-Kwon;Kim, Hyun-Seok;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.2
    • /
    • pp.97-103
    • /
    • 2006
  • The integrated navigation system(INS) for fishing boat which organized the marine radar, global positioning system(GPS) compass, automatic identification system(AIS), echo sounder, GPS and electronic nautical chart(ENC) was manufactured to reduce the marine accidents of fishing boats occurred frequently at coastal and offshore. The application possibility of INS for fishing boat was examined for basic experiments in the sea. Integration display of various information, such as other vessel's behavior, depth, own vessel's position etc. was done to help the operate user who understood the circumstance around own boat. Therefore, the system will be utilized as a useful equipment for safety voyage and fishing work on the fishing ground.

Precise Positioning of Farm Vehicle Using Plural GPS Receivers - Error Estimation Simulation and Positioning Fixed Point - (다중 GPS 수신기에 의한 농업용 차량의 정밀 위치 계측(I) - 오차추정 시뮬레이션 및 고정위치계측 -)

  • Kim, Sang-Cheol;Cho, Sung-In;Lee, Seung-Gi;Lee, W.Y.;Hong, Young-Gi;Kim, Gook-Hwan;Cho, Hee-Je;Gang, Ghi-Won
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.116-121
    • /
    • 2011
  • This study was conducted to develop a robust navigator which could be in positioning for precision farming through developing a plural GPS receiver with 4 sets of GPS antenna. In order to improve positioning accuracy by integrating GPS signals received simultaneously, the algorithm for processing plural GPS signal effectively was designed. Performance of the algorithm was tested using a simulation program and a fixed point on WGS 84 coordinates. Results of this study are aummarized as followings. 1. 4 sets of lower grade GPS receiver and signals were integrated by kalman filter algorithm and geometric algorithm to increase positioning accuracy of the data. 2. Prototype was composed of 4 sets of GPS receiver and INS components. All Star which manufactured by CMC, gyro compass made by KVH, ground speed sensor and integration S/W based on RTOS(Real Time Operating System)were used. 3. Integration algorithm was simulated by developed program which could generate random position error less then 10 m and tested with the prototype at a fixed position. 4. When navigation data was integrated by geometrical correction and kalman filter algorithm, estimated positioning erros were less then 0.6 m and 1.0 m respectively in simulation and fixed position tests.

Calibration of Laser scanning Mobile Mapping System using Lynx Mobile Mapper (Lynx Mobile Mapper를 이용한 레이저스캐너 기반 차량 MMS의 캘리브레이션)

  • Jeong, Tae-Jun;Yun, Hong-Sic;Hwang, Jin-Sang;Kim, Yong-Hyun;Lee, Ha-Jun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.207-208
    • /
    • 2010
  • In this paper, we carried out calibration of laser scanning MMS(Mobile Mapping System) using Lynx Mobile Mapper, a new MMS developed at Optech Incorporated. Laser scanning MMS could be defined as an integration of several subsystems. Subsystems are composed of laser scanner, gps receiver and antenna, INS(Inertial Navigation System), DMI(Distance Measurement Instrument). These are obtained 3D spatial information by direct-georeferencing technology. To obtain 3D spatial information, calibration of laser scanning MMS is required prior to operation system, it is similar to airborme lidar system. 145 checkpoints were used to accuracy estimation. The accuracy results are about 5cm(RMSE) for calibration in all directions(east, north, ellipsoidal height).

  • PDF