• Title/Summary/Keyword: GPS, INS

Search Result 345, Processing Time 0.025 seconds

Airborne GPS/INS Integration Processing Module Development

  • KANG, Joon-Mook;YUN, Hee-Cheon
    • Korean Journal of Geomatics
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 2004
  • In order to meet the users' demand, who needs faster and more accurate data in geographic information, it is necessary to obtain and process the data more effectively. Now more effective data obtainments about geographic information is possible through the development of integration technology, which is applied to the field of geographic information, as well as through the development of hardware and software engineering. With the fast and precise correction and update, the development of integrate technology can bring the reduction of the time and money. To obtain fast and precise geographic information using Aerial Photogrammetry method, it is necessary to develop Airborne GPS/INS integration system, which makes GCP to the minimum. For this reason, this study has tried to develop a system which could unite and process both GPS and INS data. For this matter, code-processing module for DGPS and OTF initializaion module, which can decide integer ambiguity even in motion, have been developed. And also, continuous kinematic carrier-processing module has been developed to calculate the location at the moment of filming. In addition, this study suggests a possibility of using a module, which can unite GPS and INS, using Kalman filtering, and also shows the INS navigation theory.

  • PDF

Cycle Slip Detection and Ambiguity Resolution for High Accuracy of an Intergrated GPS/Pseudolite/INS System

  • PARK, Woon-Young;LEE, Hung-Kyu;LEE, Jae-One
    • Korean Journal of Geomatics
    • /
    • v.3 no.2
    • /
    • pp.129-140
    • /
    • 2004
  • This paper addresses solutions th the challenges of carrier phase integer ambiguity resolution and cycle slip detection/identification, for maintaining high accuracy of an integrated GPS/Pseudolite/INS system. Such a hybrid positioning and navigation system is an augmentation of standard GPS/INS systems in localized areas. To achieve the goal of high accuracy, the carrier phase measurements with correctly estimated integer ambiguities must be utilized to update the system integration filter's states. The contribution presents an effective approach to increase the reliability and speed of integer ambiguity resolution through using pseudolite and INS measurements, with special emphasis on reducing the ambiguity search space. In addition, an algorithm which can effectively detect and correct the cycle slips is described as well. The algorithm utilizes additional position information provided by the INS, and applies a statistical technique known as th cumulative-sun (CUSUM) test that is very sensitive to abrupt changes of mean values. Results of simulation studies and field tests indicate that the algorithms are performed pretty well, so that the accuracy and performance of the integrated system can be maintained, even if cycle slips exist in the raw GPS measurements.

  • PDF

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

GPS/INS Unified System Development

  • Joon mook Kang;Young bin Nim;Yoon, Hee-Cheon;Cho, Sung-ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.47-54
    • /
    • 2004
  • In order to meet the users demand, who needs faster and more accurate data in geographic information it is necessary to obtain and process the data more effectively. Now more effective data obtainment about geographic information is possible through the development of unified technology, which is applied to the field of geographic information, as well as through the development of hardware and software engineering. With the fast and precise correction and update, the development of unified technology can bring the reduction of the time and money. For the obtainment of geographic information which can meet the demand of the users, the unified technology has been applied to various fields, and in Aerial Photogrammetry field, many are doing researches actively for the GPS/INS unified system. To obtain fast and precise geographic information using Aerial Photogrammetry method, it is necessary to develop Airborne GPS/INS unified system, which makes GCP to the minimum. For this reason, this study has tried to develop a system which could unite and process both GPS and INS data. For this matter, code-processing module for DGPS and OTF initialization module, which can decide integer ambiguity even in motion, have been developed. And also, continuous kinematic carrier-processing module has been developed to calculate the location at the moment of filming. In addition, this study suggests a possibility of using a module, which can unite GPS and INS, using Kalman filtering, and also shows the INS navigation theory.

  • PDF

Performance Evaluation of Total-state UKF for Multipath Error in Tightly-coupled GPS/INS Integration (GPS/INS 강결합에서 다중경로 오차에 대한 Total-state UKF의 성능 분석)

  • Yang, Cheol-Kwan;Shim, Duk-Sun;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.536-542
    • /
    • 2011
  • This paper considers the performance of tightly-coupled GPS/INS integration using total-state UKF (Unscented Kalman Filter) for multipath error. In the city canyon there exists large multipath error and it may happen that GPS satellites are seen only three or less. For these situations simulations show that the performance of total-state UKF is better than that of EKF in the presence of multipath error. The total-state UKF shows robust performance for multipath error.

Lever Arm Compensation of Reference Trajectory for Flight Performance Evaluation of DGPS/INS installed on Aircraft (항공기에 탑재된 DGPS/INS 복합항법 장치의 비행 시험 성능 평가를 위한 기준궤적의 Lever Arm 보정)

  • Park, Ji-Hee;Lee, Seong-Woo;Park, Deok-Bae;Shin, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1086-1092
    • /
    • 2012
  • It has been studied for DGPS/INS(Differential Global Positioning System/Inertial Navigation System) to offer the more precise and reliable navigation data with the aviation industry development. The flight performance evaluation of navigation system is very significant because the reliability of navigation data directly affect the safety of aircraft. Especially, the high-level navigation system, as DGPS/INS, need more precise flight performance evaluation method. The performance analysis is performed by comparing between the DGPS/INS navigation data and reference trajectory which is more precise than DGPS/INS. The GPS receiver, which is capable of post-processed CDGPS(Carrier-phase DGPS) method, can be used as reference system. Generally, the DGPS/INS is estimated the CG(Center of Gravity) point of aircraft while the reference system is output the position of GPS antenna which is mounted on the outside of aircraft. For this reason, estimated error between DGPS/INS and reference system will include the error due to lever arm. In order to more precise performance evaluation, it is needed to compensate the lever arm. This paper presents procedure and result of flight test which includes lever arm compensation in order to verify reliability and performance of DGPS/INS more precisely.

GPS/INS에 기반의 디지털 정사영상의 정확도 향상 방안

  • Oh, Jong-Min;Wie, Gwang-Jae;Lee, Seung-Huhn;Heo, Hyun-Soo;Kim, Yeong-Gwang
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.455-458
    • /
    • 2007
  • Currently, aortal surveying is getting advanced in the world. New digital equipment for aerial surveying makes improvement of accuracy, economical efficiency and reduces cost. for a result, however, there are required to produce a accurate product. In this study, we used two kinds of data, the one which used only GPS/INS data and the other one which used GPS/INS data added on GCPs from digital maps, and made as a mosaic to compare both of them whether which one is better based on digital maps. the result is that the data which used GPS/INS data added on GCPs from digital maps was a lot better than GPS/INS data.

  • PDF

Performance Analysis of GPS/INS Integrated Navigation Systems (GPS/INS 통합 항법시스템의 성능분석에 관한 연구)

  • Cho, J.B.;Won, J.H.;Ko, S.J.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.822-825
    • /
    • 1999
  • This paper compares two methods of GPS/INS integration ; tightly-coupled integration ana loosely-coupled integration. In the tightly -coupled method an integrated Kalman filter is designed to process raw GPS measurement data for state update and INS data for propagation. The loosely-coupled integration method uses the solution outputs from a stand-alone GPS receiver for update. The loosely-coupled method is simpler and can readily be applied to off-the-self receivers and sensors while the tightly-coupled integration requires access to raw measurement mechanism of the receiver. Simulation result show that the tightly-coupled integration system exhibits better performance and robustness than loosely-coupled integration method.

  • PDF

Design of a Monitoring System for a GPS/INS Integration System (GPS/INS항법 시스템용 모니터링 시스템의 설계)

  • Lee, See-Ho;Hwang, Dong-Hwan;Moon, Sung-Wook;Kim, Se-Hwan;Lee, Sang-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.948-950
    • /
    • 1999
  • In this paper, a monitoring system is desigend for a GPS/INS integration system. The function of the monitoring system is to acquire real-time data from system and displayed them. The monitoring system supervises the operation of navigation system. Visual C++ was used in the implementation. The performance of the monitoring system was verified through a real-time test for a GPS/INS Integration system which is composed of a GPS Receiver. IMU(Inertial Measurement Unit), NCU (Navigation Computer Unit)

  • PDF

Estimation of Errors in Inertial Navigation Systems with GPS

  • Chang, Yu-Shin;Ha, Seong-Ki;Kim, Eun-Joo;Hong, Sin-Pyo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.69.1-69
    • /
    • 2001
  • In this paper, observability properties of a multiantenna GPS measurement system for the estimation of errors in INS are presented. It is shown that time-invariant INS error models are observable with measurements from at least three GPS antennas on the vehicle. There is at least one unobservable mode with two antennas. There are three unobservable modes with one antenna. It is also shown that time-varying INS error models are instantaneously observable with measurements from three GPS antennas. A numerical simulation results are given to verify the effectiveness of the multiantenna measurement system on the INS error estimation. In the simulation, a GPS measurement system is considered in which a trade-off between computational load and accuracy of estimation is achieved.

  • PDF