• Title/Summary/Keyword: GPP

Search Result 815, Processing Time 0.021 seconds

Implementation of Heat Control System using NB-IoT (NB-IoT를 활용한 발열 제어 시스템 구현)

  • Shin, DongKeun;Kim, HyungJin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.135-141
    • /
    • 2019
  • Internet of thing becomes more active, many sensor devices are increasing. Sensors can use network wired network or use mobile communication network. From the viewpoint of the transmission rate, the mobile communication network can be roughly divided into two types of high-speed communication and low-speed communication. In the case of hundreds of millions of sensors in the mobile communication network, resources are wasted to use high-speed communication. Communication is required to reduce the transmission rate and appropriately allocate resources without wasting such resources. As the Internet of Thing has been activated, Narrowband Internet of Thing(NB-IoT), which is one of the low-power technologies in recent mobile communications, is in the spotlight from various companies. Currently, it can be seen that only NB-IoT or other low power consumption communication has the potential to be able to connect to the Internet with rapidly increasing sensor devices. In this paper, we designed and implemented a heater controller using Huawei NB-IoT communication Module, a server that collects controller information, and an application that allows default settings for devices. The main function of this system is to collect temperature and heater status and give it to the server, control the heater from the server, and set parameters for the heater to operate automatically. The system can be applied to places where wired communication is not established, such as road information, smart agriculture, and small reservoirs as well as heaters.

Development of a Biophysical Rice Yield Model Using All-weather Climate Data (MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발)

  • Lee, Jihye;Seo, Bumsuk;Kang, Sinkyu
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.721-732
    • /
    • 2017
  • With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.

On the Nighttime Correction of CO2 Flux Measured by Eddy Covariance over Temperate Forests in Complex Terrain (복잡지형의 온대산림에서 에디 공분산으로 관측된 CO2 플럭스의 야간 자료 보정에 관하여)

  • Kang, Minseok;Kim, Joon;Kim, Hyun-Seok;Thakuri, Bindu Malla;Chun, Jung-Hwa
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • Nighttime correction of $CO_2$ flux is one of the most important and challenging tasks in eddy covariance measurements over a complex mountainous terrain. In this study, we have scrutinized the quality and the credibility of the $CO_2$ flux datasets which were produced by employing three different methods of nighttime correction, i.e., (1) friction velocity ($u^*$) correction, (2) light response curve (LRC) correction, and (3) advection-based van Gorsel (VG) correction. The whole year datasets used in our analysis were collected at the two KoFlux tower sites (i.e., GDK deciduous forest site at the upper hill and GCK coniferous forest site at the lower hill) located in the valley of Gwangneung National Arboretum in central Korea. The resultant magnitudes and patterns of ecosystem respiration ($R_E$), gross primary productivity (GPP), and net ecosystem exchange (NEE) of $CO_2$ showed marked differences among the datasets produced with three different correction methods, which were also site-specific. The examination from micrometeorological and ecological perspectives suggests that the major cause of some inconsistency seems to be associated with the advection of $CO_2$ along the sloping terrain and the inappropriate selection of the correction data that might have been already affected by advective flows. The comparison with the results from other studies indicated that the overall characteristics of the corrected $CO_2$ fluxes at GDK and GCK (except those with LRC correction) were well within the ranges reported in the literature for various ecosystems in East Asia in similar latitudes. However, our study also implies that there will be always a room for further improvement in the present datasets. Therefore, caution must be exercised for the data users in order to properly use the updated version of datasets through transparent, open and participatory communication with data producers.

Gridded Expansion of Forest Flux Observations and Mapping of Daily CO2 Absorption by the Forests in Korea Using Numerical Weather Prediction Data and Satellite Images (국지예보모델과 위성영상을 이용한 극상림 플럭스 관측의 공간연속면 확장 및 우리나라 산림의 일일 탄소흡수능 격자자료 산출)

  • Kim, Gunah;Cho, Jaeil;Kang, Minseok;Lee, Bora;Kim, Eun-Sook;Choi, Chuluong;Lee, Hanlim;Lee, Taeyun;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1449-1463
    • /
    • 2020
  • As recent global warming and climate changes become more serious, the importance of CO2 absorption by forests is increasing to cope with the greenhouse gas issues. According to the UN Framework Convention on Climate Change, it is required to calculate national CO2 absorptions at the local level in a more scientific and rigorous manner. This paper presents the gridded expansion of forest flux observations and mapping of daily CO2 absorption by the forests in Korea using numerical weather prediction data and satellite images. To consider the sensitive daily changes of plant photosynthesis, we built a machine learning model to retrieve the daily RACA (reference amount of CO2 absorption) by referring to the climax forest in Gwangneung and adopted the NIFoS (National Institute of Forest Science) lookup table for the CO2 absorption by forest type and age to produce the daily AACA (actual amount of CO2 absorption) raster data with the spatial variation of the forests in Korea. In the experiment for the 1,095 days between Jan 1, 2013 and Dec 31, 2015, our RACA retrieval model showed high accuracy with a correlation coefficient of 0.948. To achieve the tier 3 daily statistics for AACA, long-term and detailed forest surveying should be combined with the model in the future.

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin (메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석)

  • Kim, Younghun;Le, Xuan-Hien;Jung, Sungho;Yeon, Minho;Lee, Gihae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.