• Title/Summary/Keyword: GPI

Search Result 98, Processing Time 0.013 seconds

Functional Analysis of the First Mannosyltransferase (PIG-M) involved in Glycosylphosphatidylinositol Synthesis in Plasmodium falciparum

  • Kim, Youn Uck;Hong, Yeongjin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.294-300
    • /
    • 2007
  • The mammalian glycosylphosphatidylinositol (GPI) anchor consists of three mannoses attached to acylated GlcN-(acyl)PI to form $Man_3$-GlcN-(acyl)PI. The first of the three mannose groups is attached to an intermediate to generate Man-GlcN-(acyl)PI by the first mannosyltransferase (GPI-MT-I). Mammalian and protozoan GPI-MT-I have different substrate specificities. PIG-M encodes the mammalial GPI-MT-I which has 423 amino acids and multiple transmembrane domains. In this work we cloned PIG-M homologues from humans, Plasmodium falciparum (PfPIG-M), and Saccharomyces cerevisiae (GPI14), to test whether they could complement GPI-MT-I-deficient mammalian cells, since this biosynthetic step is likely to be a good target for selective screening of inhibitors against many pathogenic organisms. PfPIG-M partially restored cell surface expression of the GPI-anchored protein CD59 in PIG-M deficient mammalian cells, and first mannose transfer activity in vitro; however, this was not the case for GPI14.

Potential role of exercise-induced glucose-6-phosphate isomerase in skeletal muscle function

  • Kwak, Seong Eun;Shin, Hyung Eun;Zhang, Di Di;Lee, Jihyun;Yoon, Kyung Jin;Bae, Jun Hyun;Moon, Hyo Youl;Song, Wook
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.2
    • /
    • pp.28-33
    • /
    • 2019
  • [Purpose] Recent studies have shown that glucose-6-phosphate isomerase (GPI)-which is a glycolysis interconversion enzyme-reduces oxidative stress. However, these studies are limited to tumors such as fibrosarcoma, and there are no studies that have examined the effects of exercise on GPI expression in mice skeletal muscle. Furthermore, GPI acts in an autocrine manner thorough its receptor, autocrine motility factor receptor (AMFR); therefore, we investigated expression level changes of secreted GPI from skeletal muscle in in vitro study to examine the potential role of GPI on skeletal muscle. [Methods] First, we performed an in vitro study, to identify the condition that upregulates GPI levels in skeletal muscle cells; we treated C2C12 muscle cells with an exercise-mimicking chemical, AICAR. AICAR treatment upregulated GPI expression level in C2C12 cell and its secretomes. To confirm the direct effect of GPI on skeletal muscle cells, we treated C2C12 cells with GPI recombinant protein. [Results] We found that GPI improved the viability of C2C12 cells. In the in vivo study, the exercise-treated mice group showed upregulated GPI expression in skeletal muscle. Based on the in vitro study results, we speculated that expression level of GPI in skeletal muscle might be associated with muscle function. We analyzed the association between GPI expression level and the grip strength of the all mice group. The mice group's grip strengths were upregulated after 2 weeks of treadmill exercise, and GPI expression level positively correlated with the grip strength. [Conclusion] These results suggested that the exercise-induced GPI expression in skeletal muscle might have a positive effect on skeletal muscle function.

Conversion of Gycosylphosphatidylinositol (GPI)-Anchored Alkaline Phosphatase by GPI-PLD

  • Moon, Young-Girl;Lee, Hyun-Jung;Kim, Mee-Ree;Myung, Pyung-Keun;Park, Soo-Young;Sok, Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.249-254
    • /
    • 1999
  • Enzymatic conversion of brain glycosylphosphatidylinositol-linked alkaline phosphatase (GPI-AP), amphiphilic, was examined. When GPI-AP was incubated with glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD), a negligible conversion of GPI-AP to hydrophilic form was observed. The inclusion of monoacylglycerols enhanced the enzymatic conversion, although the action of monoacylglycerols differed greatly according to the size of acyl group; the enzymatic conversion was enhanced considerably in the presence of monoacylglycerols possessing acyl group of longer chain length ($C_{10-}C_{18}$), which monoacylglycerols with acyl moiety of shorter length ($C_{4-}C_{8}$) did fail to augment the enzymatic conversion. Noteworthy, monooleoylglycerol was much more effective than the other monoacylglycerols in promoting the enzymatic conversion, indicating a beneficial role of the unsaturation in acyl chain. Meanwhile, ionic amphiphiles such as monohexadecyllysophosphatidylcholoine and palmitoyl-carnitine decreased the enzymatic conversion of GPI-AP in a concentration-dependent manner, with monohexadecyllysophosphatidylcholine and palmitoyl-carnitine deceased the enzymatic conversion of GPI-AP in a concentration-dependent manner, with monohexadecyllysophosphatidylcholoine being more inhibitory than palmitoylcarnitine. Separately when GPI-AP was exposed to various oxidants prior to the incubation with GPI-PLD, a remarkable decrease of the enzymatic conversion was observed with hypochlorite and peroynitrite generators, but not $H_{2}O_{2}$. In further study, hypochlorite was found to inactivate GPI-PLD at low concentrations ($3~100{\mu}M$). From these results, it is suggested that the enzymatic conversion of GPI-AP by GPI-PLD may be regulated in vivo system.

  • PDF

Annual Cycle and Interannual Variability of Tropical Cyclone Genesis Frequency in the CMIP5 Climate Models: Use of Genesis Potential Index (CMIP5 기후모델에서 나타나는 열대저기압 생성빈도의 연진동과 경년변동성: 잠재생성지수의 이용)

  • Kwon, MinHo
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.583-595
    • /
    • 2012
  • The potential for tropical cyclogenesis in a given oceanic and atmospheric environments can be represented by genesis potential index (GPI). Using the 18 Coupled Model Inter Comparison Project phase 5 (CMIP5) models, the annual cycle of GPI and interannual variability of GPI are analyzed in this study. In comparison, the annual cycle of GPI calculated from reanalysis data is revisited. In particular, GPI differences between CMIP5 models and reanalysis data are compared, and the possible reasons for the GPI differences are discussed. ENSO (El Nino and Southern Oscillation) has a tropical phenomenon, which affects tropical cyclone genesis and its passages. Some dynamical interpretations of tropical cyclogenesis are suggested by using the fact that GPI is a function of four large-scale parameters. The GPI anomalies in El Nino or La Nina years are discussed and the most contributable factors are identified in this study. In addition, possible dynamics of tropical cyclogenesis in the Northern Hemisphere Pacific region are discussed using the large-scale factors.

Use of Clostridium septicum Alpha Toxins for Isolation of Various Glycosylphosphatidylinositol-Deficient Cells

  • Shin Dong-Jun;Choy Hyon E.;Hong Yeongjin
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.266-271
    • /
    • 2005
  • In eukaryotic cells, various proteins are anchored to the plasma membrane through glycosylphosphatidylinositol (GPI). To study the biosynthetic pathways and modifications of GPI, various mutant cells have been isolated from the cells of Chinese hamster ovaries (CHO) supplemented with several exogenous genes involved in GPI biosynthesis using aerolysin, a toxin secreted from gram-negative bacterium Aeromonas hydrophila. Alpha toxin from Gram-positive bacterium Clostridium septicum is homologous to large lobes (LL) of aerolysin, binds GPI-anchored proteins and possesses a cell-destroying mechanism similar to aerolysin. Here, to determine whether alpha toxins can be used as an isolation tool of GPI-mutants, like aerolysin, CHO cells stably transfected with several exogenous genes involved in GPI biosynthesis were chemically mutagenized and cultured in a medium containing alpha toxins. We isolated six mutants highly resistant to alpha toxins and deficient in GPI biosynthesis. By genetic complementation, we determined that one mutant cell was defective of the second subunit of dolichol phosphate mannose synthase (DPM2) and other five cells were of a putative catalytic subunit of inositol acyltransferase (PIG-W). Therefore, C. septicum alpha toxins are a useful screening probe for the isolation of various GPI-mutant cells.

Trypanosome Glycosylphosphatidylinositol Biosynthesis

  • Hong, Yeon-Chul;Kinoshita, Taroh
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.197-204
    • /
    • 2009
  • Trypanosoma brucei, a protozoan parasite, causes sleeping sickness in humans and Nagana disease in domestic animals in central Africa. The trypanosome surface is extensively covered by glycosylphosphatidylinositol (GPI)-anchored proteins known as variant surface glycoproteins and procyclins. GPI anchoring is suggested to be important for trypanosome survival and establishment of infection. Trypanosomes are not only pathogenically important, but also constitute a useful model for elucidating the GPI biosynthesis pathway. This review focuses on the trypanosome GPI biosynthesis pathway. Studies on GPI that will be described indicate the potential for the design of drugs that specifically inhibit trypanosome GPI biosynthesis.

Design and Performance Analysis of PID type Controllers for Automatic Voltage Regulator(AVR) System Based on i-PID, GPI and OCD Methods (AVR(Automatic Voltage Regulator)시스템을 위한 PID형 제어기의 설계 -i-PID, GPI 및 OCD 알고리즘을 중심으로 -)

  • Choe, Yeon-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1383-1391
    • /
    • 2016
  • This paper is concerned with applicability of a new type of controllers, called i-PID and GPI in which unknown parts of the plant are taken into account without any modeling procedure, to automatic voltage regulator (AVR) system. First, the procedure for applying i-PID and GPI algorithms to AVR system is proposed, which uses model reduction technique based on the given information of AVR. Second, simulations are given to verify their effectiveness comparing to various PID algorithms including PIDD2 which is four-term controller, that is, consisting of PID and second order derivative terms. Superior response performances of i-PID and GPI in comparison to conventional PID controllers are shown. Moreover, i-PID can highly improve the system robustness with respect to model uncertainties, especially to load variations.

Spatial Analysis of Typhoon Genesis Distribution based on IPCC AR5 RCP 8.5 Scenario (IPCC AR5 RCP 8.5 시나리오 기반 태풍발생 공간분석)

  • Lee, Sungsu;Kim, Ga Young
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.49-58
    • /
    • 2014
  • Natural disasters of large scale such as typhoon, heat waves and snow storm have recently been increased because of climate change according to global warming which is most likely caused by greenhouse gas in the atmosphere. Increase of greenhouse gases concentration has caused the augmentation of earth's surface temperature, which raised the frequency of incidences of extreme weather in northern hemisphere. In this paper, we present spatial analysis of future typhoon genesis based on IPCC AR5 RCP 8.5 scenario, which applied latest carbon dioxide concentration trend. For this analysis, we firstly calculated GPI using RCP 8.5 monthly data during 1982~2100. By spatially comparing the monthly averaged GPIs and typhoon genesis locations of 1982~2010, a probability density distribution(PDF) of the typhoon genesis was estimated. Then, we defined 0.05GPI, 0.1GPI and 0.15GPI based on the GPI ranges which are corresponding to probability densities of 0.05, 0.1 and 0.15, respectively. Based on the PDF-related GPIs, spatial distributions of probability on the typhoon genesis were estimated for the periods of 1982~2010, 2011~2040, 2041~2070 and 2071~2100. Also, we analyzed area density using historical genesis points and spatial distributions. As the results, Philippines' east area corresponding to region of latitude $10^{\circ}{\sim}20^{\circ}$ shows high typhoon genesis probability in future. Using this result, we expect to estimate the potential region of typhoon genesis in the future and to develop the genesis model.

A New Cyclophilin Inhibitor from Ganoderma lucidum: Purification and Characterization

  • Lim, Jin-Ik;Jeong, Ki-Chul;Kang, In-Sug;Kim, Soo-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1055-1060
    • /
    • 2004
  • A new inhibitor for peptidylprolyl cis-trans isomerase (PPIase) has been isolated from Ganoderma lucidum and purified to homogeneous state by organic solvent extraction. The purified PPIase inhibitor (GPI) is assumed to be a membrane-associated glycoprotein. GPI inhibits specifically the bovine brain PPIase, a cyclophilin, and has no effect on the FKBP activity. The results of our chemical modification study of GPI indicate the presence of Lys residue(s) at or near its binding site. Like CsA-cyclophilin complex, GPI-bovine brain PPIase complex strongly inhibits the calcineurin activity in vitro, suggesting the possible involvement of GPI in immunomodulating pathway by the formation of PPIase-inhibitor-calcineurin complex.