DOI QR코드

DOI QR Code

Annual Cycle and Interannual Variability of Tropical Cyclone Genesis Frequency in the CMIP5 Climate Models: Use of Genesis Potential Index

CMIP5 기후모델에서 나타나는 열대저기압 생성빈도의 연진동과 경년변동성: 잠재생성지수의 이용

  • Kwon, MinHo (Ocean Circulation and Climate Research Division, Korea Institute of Ocean Sciences and Technology)
  • 권민호 (한국해양과학기술원 해양순환기후연구부)
  • Received : 2012.10.31
  • Accepted : 2012.11.29
  • Published : 2012.12.31

Abstract

The potential for tropical cyclogenesis in a given oceanic and atmospheric environments can be represented by genesis potential index (GPI). Using the 18 Coupled Model Inter Comparison Project phase 5 (CMIP5) models, the annual cycle of GPI and interannual variability of GPI are analyzed in this study. In comparison, the annual cycle of GPI calculated from reanalysis data is revisited. In particular, GPI differences between CMIP5 models and reanalysis data are compared, and the possible reasons for the GPI differences are discussed. ENSO (El Nino and Southern Oscillation) has a tropical phenomenon, which affects tropical cyclone genesis and its passages. Some dynamical interpretations of tropical cyclogenesis are suggested by using the fact that GPI is a function of four large-scale parameters. The GPI anomalies in El Nino or La Nina years are discussed and the most contributable factors are identified in this study. In addition, possible dynamics of tropical cyclogenesis in the Northern Hemisphere Pacific region are discussed using the large-scale factors.

대기 및 해양의 대규모 환경에서 열대저기압 발생의 잠재적 빈도는 잠재생성지수(GPI; Genesis Potential Index)를 이용하여 예측할 수 있다. 본 연구에서는 18개의 CMIP5 기후모델을 이용하여 GPI의 연진동 및 경년변동성이 분석되었다. 비교를 위하여 재분석자료로부터 계산된 GPI의 연진동이 재조명되었다. 특히 CMIP5 기후모델과 재분석자료에 의한 GPI가 비교되었고, 그 차이에 대한 가능한 해석이 논의되었다. ENSO (El Nino and Southern Oscillation)는 열대 저기압 발생 및 경로에 영향을 주는 열대 기후현상이다. 잠재생성지수가 네 개의 대규모 매개변수의 함수임을 이용함으로써 열대저기압발생에 대한 역학적 해석이 제시되었다. 본 연구에서는 엘니뇨 혹은 라니냐 해에 GPI 편차를 논의하였고, 그 편차에 가장 영향을 많이 주는 인자를 찾았다. 또한 여러 대규모 인자를 활용하여 북태평양지역 열대저기압 발생에 대하여 가능한 기작을 논의하였다.

Keywords

References

  1. Bengtsson, L., Boettger, H., and Kanamitsu, M., 1982, Simulation of hurricane-type vortices in a general circulation model. Tellus, 34, 440-457. https://doi.org/10.1111/j.2153-3490.1982.tb01833.x
  2. Bengtsson, L., Botzet, M., and Esch, M., 1995, Hurricanetype vortices in a general circulation model. Tellus, 47, 175-196. https://doi.org/10.1034/j.1600-0870.1995.t01-1-00003.x
  3. Bengtsson, L., Hodges, K.I., and Esch, M., 2007, Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analysis. Tellus, 59, 396-416. https://doi.org/10.1111/j.1600-0870.2007.00236.x
  4. Bister, M. and Emanuel, K.A., 1998, Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 52, 233-240.
  5. Bony, S., Sud, Y., Lau, K.M., Susskind, J., and Saha, S., 1997, Comparison and satellite assessment of NASA/ DAO and NCEP-NCAR reanalyses over Tropical Ocean: Atmospheric hydrology and radiation. Journal of Climate, 10, 1441-1462. https://doi.org/10.1175/1520-0442(1997)010<1441:CASAON>2.0.CO;2
  6. Camargo, S.J. and Sobel, A.H., 2004, Formation of tropical storms in an atmospheric general circulation model. Tellus, 56, 56-67. https://doi.org/10.1111/j.1600-0870.2004.00033.x
  7. Camargo, S.J., Emanuel, K.A., and Sobel, A.H., 2007a, Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. Journal of Climate, 20, 4819-4834. https://doi.org/10.1175/JCLI4282.1
  8. Camargo, S.J., Sobel, A.H., Barnston, A.G., and Emanuel, K.A., 2007b, Tropical cyclone genesis potential index in climate models. Tellus, 59, 428-443. https://doi.org/10.1111/j.1600-0870.2007.00238.x
  9. Choi, K.S., Cha, Y.M., and Kim, T.R., 2012, Decadal change of frequency in Korea landfalling tropical cyclone activity. Journal of the Korean Earth Science Society, 33, 49-58. (in Korean) https://doi.org/10.5467/JKESS.2012.33.1.49
  10. Emanuel, K.A., 1995, Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. Journal of Atmospheric Sciences, 52, 3969-3976. https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2
  11. Emanuel, K.A. and Nolan, D.S., 2004, Tropical cyclone activity and global climate. Proceedings of the 26th conference on hurricanes and tropical meteorology, American Meteorological Society, FL, USA, 240-241.
  12. Gill, A.E., 1980, Some simple solutions for heat induced tropical circulation. Quarterly Journal of Royal Meteorological Society, 106, 447-462. https://doi.org/10.1002/qj.49710644905
  13. Gray, W.M., 1979, Hurricanes: Their formation, structure and likely role in the tropical circulation. A technical note of meteorology over the tropical oceans, Royal Meteorological Society, 155-218.
  14. Guilyardi, E., Bellenger, H., Collins, M., Ferrett, S., Cai, W., and Wittenberg, A., 2012, A first look at ENSO in CMIP5. CLIVAR Exchanges, 58, 29-32.
  15. Han, J.Y. and Baik, J.J., 2006, Seasonal predictability of typhoon activity using an atmospheric general circulation model and observed sea surface temperature data. Journal of the Korean Earth Science Society, 27, 653-658. (in Korean)
  16. Jang, S.R. and Ha, K.J., 2008, On the relationship between typhoon intensity and formation region: Effect of developing and decaying ENSO. Journal of the Korean Earth Science Society, 29, 29-44. (in Korean) https://doi.org/10.5467/JKESS.2008.29.1.029
  17. Jiang, J.H., Su, H., Zhai, C., Perun, V., Del Genio, A.D., Nazarenko, L.S., Donner, L.J., Horowitz, L.W., Seman, C.J., Cole, J., Gettelman, A., Ringer, M.A., Rotstayn, L.D., Jeffrey, S.J., Wu, T., Brient, F., Dufresne, J.L., Kawai, H., Koshiro, T., Masahiro, W., L'cuyer, T.S., Volodin, E.M., Iversen, T., Drange, H., dos Santos Mesquita, M., Read, W.G., Waters, J.W., Tian, B., Teixeira, J., and Stephens, G.L., 2012, Robustness and uncertainties in the new CMIP5 climate model projections. Journal of Geophysical Research, 117, D14105, doi:10.1029/2011JD017237.
  18. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D., 1996, The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society, 77, 437-471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  19. Knutson, T.R. and Tuleya, R.E., 1999, Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system. Climate Dynamics, 15, 503-519. https://doi.org/10.1007/s003820050296
  20. Knutti, R. and Sedlacek, J., 2012, Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, doi:10.1038/nclimate1716.
  21. Li, T., Kwon, M., Zhao, M., Kug, J.S., Luo, J.J., and Yu, W., 2010, Global warming shifts Pacific tropical cyclone location. Geophysical Research Letters, 37, L21804, doi:10.1029/2010GL045124.
  22. Lindzen, R.S. and Nigam, S., 1987, On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. Journal of Atmospheric Sciences, 44, 2418-2436. https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
  23. McDonald, R.E., Bleaken, D.G., Cresswell, D.R., Pope, V.D., and Senior, C.A., 2005, Tropical storms: representation and diagnosis in climate models and the impacts of climate change. Climate Dynamics, 25, 19- 36. https://doi.org/10.1007/s00382-004-0491-0
  24. Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S., and Noda, A., 2006, Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. Journal of Meteorological Society of Japan, 84, 259-276. https://doi.org/10.2151/jmsj.84.259
  25. Ryan, B.F., Watterson, I.G., and Evans, J.L., 1992, Tropical cyclone frequencies inferred from Gray's yearly genesis parameter: Validation of GCM tropical climate. Geophysical Research Letters, 19, 1831-1834. https://doi.org/10.1029/92GL02149
  26. Smith, T.M. and Reynolds, R.W., 2004, Improved Extended Reconstruction of SST (1854-1997). Journal of Climate, 17, 2466-2477. https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2
  27. Tang, B.H. and Neelin, J.D., 2004, ENSO influence on Atlantic hurricanes via tropospheric warming. Geophysical Research Letters, 31, L24204, doi:10.1029/2004GL021072.
  28. Taylor, K.E., Stouffer, R.J., and Meehl, G.A., 2012, An overview of CMIP5 and the experiment design. Bulletin of American Meteorological Society, 93, 485-498. https://doi.org/10.1175/BAMS-D-11-00094.1
  29. Walsh, K., Lavender, S., Scoccimarro, E., and Murakami, H., 2012, Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, doi:10.1007/s00382-012-01298-z.
  30. Wang, B. and Chan, J., 2002, How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15, 1643-1658. https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
  31. Wang, B. and Xie, X., 1996, Lowfrequency equatorial waves in sheared zonal flow. Part I: Stable waves. Journal of Atmospheric Sciences, 53, 449-467. https://doi.org/10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2