VaR is used extensively as a tool for risk management by financial institutions. For convenience, the normal distribution is usually assumed for the measurement of VaR, but recently the method using extreme value theory is attracted for more accurate VaR estimation. So far, GEV and GPD models are used for probability models of EVT for the VaR estimation. In this paper, the PP model is suggested for improved VaR estimation as compared to the traditonal EV models such as GEV and GPD models. In view of the stochastic process, the PP model is regarded as a generalized model which include GEV and GPD models. In the empirical analysis, the PP model is shown to be superior to GEV and GPD models for the performance of VaR estimation.
The composite lognormal-generalized Pareto distribution (LN-GPD) is a mixture of right-truncated lognormal and GPD for a given threshold value. Scollnik (Scandinavian Actuarial Journal, 2007, 20-33, 2007) shows that the composite LN-GPD is adequate to describe body distribution and heavy-tailedness. This paper considers time-varying modeling of the LN-GPD based on local polynomial maximum likelihood estimation. Time-varying model provides significant detailed information of time dependent data, hence it can be applied to disciplines such as service engineering for staffing and resources management. Our work also extends to Beirlant and Goegebeur (Journal of Multivariate Analysis, 89, 97-118, 2004) in the sense of losing no data by including truncated lognormal distribution. Our proposed method is shown to perform adequately in simulation. Real data application to the service time of the Israel bank call center shows interesting findings on the staffing policy.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1053-1057
/
2008
본 연구에서는 산악형 강수 해석을 위해 제주도내 강우관측 자료를 이용하여 확률강우량 산정 및 고도와의 선형회귀분석을 수행하였다. 제주도내 강우관측 자료는 기상관서 4개소 및 AWS(Automatic Weather System, 자동기상관측소) 13개소의 자료를 활용하였다. 확률강우량 산정시 AWS 강우관측 자료는 AMS(Annual Maximum Series, 연 최대치 계열) 모형을 적용하기에는 자료기간이 충분하지 않으므로 짧은 자료기간에 적합한 PDS(Partial Duration Series, 부분 기간치 계열) 모형을 적용하였다. 따라서 본 연구에서는 PDS의 대표적인 분포형인 GPD(Generalized Pareto Distribution)를 적용하여 지속시간별 확률강우량을 산정하였다. 산정된 지속시간별 확률강우량과 고도와의 관계를 확인하기 위하여 선형회귀분석을 수행하였다. 회귀분석 결과 확률강우량은 고도가 증가함에 따라 선형적으로 증가하였다. 또한, 재현기간이 길어질수록 고도에 따른 확률강우량 증가율도 증가하였다. 다만, 재현기간과 관계없이 지속시간이 짧을 경우 확률강우량과 고도와의 선형 관계는 약해지는 것으로 나타났다.
Generalized Pareto distribution (GPD) is frequently applied in hydrologic extreme value analysis. The main objective of statistics of extremes is the prediction of rare events, and the primary problem has been the estimation of the threshold and the exceedances which were difficult without an accurate method of calculation. In this paper, to obtain the threshold or the exceedances, four methods were considered. For this comparison a GPD model was used to estimate parameters and quantiles for the seven durations (1, 2, 3, 6, 12, 18 and 24 hours) and the ten return periods (2, 3, 5, 10, 20, 30, 50, 70, 80 and 100 years). The parameters and quantiles of the three-parameter generalized Pareto distribution were estimated with three methods (MOM, ML and PWM). To estimate the degree of fit, three methods (K-S, CVM and A-D test) were performed and the relative root mean squared error (RRMSE) was calculated for a Monte Carlo generated sample. Then the performance of these methods were compared with the objective of identifying the best method from their number.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.453-453
/
2017
본 연구에서는 최근 기후변화로 인한 집중호우의 발생횟수의 경향을 확률적으로 분석함에 있어 1개월 동안 80 mm/day 이상의 강우사상을 집중호우로 정의하여, 대구 및 부산 강우관측소로부터 수집된 384개월 동안의 집중호우를 분석하였다. 집중호우 월별 발생횟수와 같은 형식의 자료의 확률적 분석은 대개 Poisson 분포 (POI)가 사용되나 자료에 포함된 0자료의 과잉은 확률분포를 왜곡시키는 문제를 발생시킨다. 본 연구에서는 이 문제를 개선하기 위하여 개발된 일반화 Poisson 확률분포 (GPD), 0-과잉 Poisson 확률분포 (ZIP), 0-과잉 일반화 Poisson 확률분포 (ZIGP), Bayesian 0-과잉 일반화 Poisson 확률분포 (Bayesian ZIGP)를 집중호우 자료에 적용하고, 5개 모형의 특성을 비교분석하였으며, Bayesian ZIGP 모형의 구축에 있어서는 정보적 사전분포를 사용함으로써 모형의 정확도를 개선하였다. 분석결과 분석하고자 하는 자료에 0이 과다하게 포함되어 있는 경우 POI 및 GPD 분포는 관측결과와는 다른 결과를 제시하여 적절한 모형으로 고려되지 못함을 알 수 있었다. 5가지 모형 중 정보적 사전분포를 탑재한 Bayesian ZIGP 모형이 가장 관측 자료와 유사한 결과를 도출하였으나 모형의 구축에 수반되는 실용적인 측면을 고려하면 ZIP 모형도 충분히 사용될 수 있는 모형으로 추천되었다.
Lee, Jeong Jin;Kim, Nam Hee;Kwon, Hye Ji;Kim, Yongku
The Korean Journal of Applied Statistics
/
v.27
no.6
/
pp.947-958
/
2014
Understanding extreme precipitation events is very important for flood planning purposes. Especially, the r-year return level is a common measure of extreme events. In this paper, we present a spatial analysis of precipitation return level using hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitations and daily precipitation above a high threshold at 62 stations in Korea with generalized extreme value(GEV) and generalized Pareto distribution(GPD), respectively. The spatial dependence among return levels is incorporated to the model through a latent Gaussian process of the GEV and GPD model parameters. We apply the proposed model to precipitation data collected at 62 stations in Korea from 1973 to 2011.
This paper conducts a statistical analysis of extreme values for both daily log-returns and daily negative log-returns, which are computed using a collection of KOSPI data from January 3, 1998 to August 31, 2011. The Poisson-GPD model is used as a statistical analysis model for extreme values and the maximum likelihood method is applied for the estimation of parameters and extreme quantiles. To the Poisson-GPD model is also added the Bayesian method that assumes the usual noninformative prior distribution for the parameters, where the Markov chain Monte Carlo method is applied for the estimation of parameters and extreme quantiles. According to this analysis, both the maximum likelihood method and the Bayesian method form the same conclusion that the distribution of the log-returns has a shorter right tail than the normal distribution, but that the distribution of the negative log-returns has a heavier right tail than the normal distribution. An advantage of using the Bayesian method in extreme value analysis is that there is nothing to worry about the classical asymptotic properties of the maximum likelihood estimators even when the regularity conditions are not satisfied, and that in prediction it is effective to reflect the uncertainties from both the parameters and a future observation.
Journal of the Korean Data and Information Science Society
/
v.26
no.6
/
pp.1479-1494
/
2015
Since the Markowitz's mean-variance framework for portfolio analysis, the topic of portfolio optimization has been an important topic in finance. Traditional approaches focus on maximizing the expected return of the portfolio while minimizing its variance, assuming that risky asset returns are normally distributed. The normality assumption however has widely been criticized as actual stock price distributions exhibit much heavier tails as well as asymmetry. To this extent, in this paper we employ the genetic algorithm to find the optimal portfolio under the Value-at-Risk (VaR) constraint, where the tail of risky assets are modeled with the generalized Pareto distribution (GPD), the standard distribution for exceedances in extreme value theory. An empirical study using Korean stock prices shows that the performance of the proposed method is efficient and better than alternative methods.
The statistical analysis to the torrential rainfall data that is defined as a rainfall amount more than 80 mm/day is performed with Daegu and Busan rainfall data which is collected during 384 months. The number of occurrence of the torrential rainfall events can be simulated usually using Poisson distribution. However, the Poisson distribution can be frequently failed to simulate the statistical characteristics of the observed value when the observed data is zero-inflated. Therefore, in this study, Generalized Poisson distribution (GPD), Zero-Inflated Poisson distribution (ZIP), Zero-Inflated Generalized Poisson distribution (ZIGP), and Bayesian ZIGP model were used to resolve the zero-inflated problem in the torrential rainfall data. Especially, in Bayesian ZIGP model, a informative prior distribution was used to increase the accuracy of that model. Finally, it was suggested that POI and GPD model should be discouraged to fit the frequency of the torrential rainfall data. Also, Bayesian ZIGP model using informative prior provided the most accurate results. Additionally, it was recommended that ZIP model could be alternative choice on the practical aspect since the Bayesian approach of this study was considerably complex.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.246-246
/
2016
본 연구에서는 최근 기후변화로 인한 집중호우의 발생횟수의 경향을 확률적으로 분석함에 있어 1개월 동안 80 mm/day 이상의 강우사상을 집중호우로 정의하여, 대구 및 부산 강우관측소로부터 수집된 384개월 동안의 집중호우를 분석하였다. 집중호우 월별 발생횟수와 같은 형식의 자료의 확률적 분석은 대개 Poisson 분포 (POI)가 사용되나 자료에 포함된 0자료의 과잉은 확률분포를 왜곡시키는 문제를 발생시킨다. 본 연구에서는 이 문제를 개선하기 위하여 개발된 일반화 Poisson 확률분포 (GPD), 0-과잉 Poisson 확률분포 (ZIP), 0-과잉 일반화 Poisson 확률분포 (ZIGP), Bayesian 0-과잉 일반화 Poisson 확률분포 (Bayesian ZIGP)를 집중호우 자료에 적용하고, 5개 모형의 특성을 비교분석하였으며, Bayesian ZIGP 모형의 구축에 있어서는 정보적 사전분포를 사용함으로써 모형의 정확도를 개선하였다. 분석결과 분석하고자 하는 자료에 0이 과다하게 포함되어 있는 경우 POI 및 GPD 분포는 관측결과와는 다른 결과를 제시하여 적절한 모형으로 고려되지 못함을 알 수 있었다. 5가지 모형 중 정보적 사전분포를 탑재한 Bayesian ZIGP 모형이 가장 관측 자료와 유사한 결과를 도출하였으나 모형의 구축에 수반되는 실용적인 측면을 고려하면 ZIP 모형도 충분히 사용될 수 있는 모형으로 추천되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.