International Journal of Advanced Culture Technology
/
제4권4호
/
pp.57-63
/
2016
In this paper, we propose the optimized binarization in the GP-GPU. Because the binarinztion is esily paralledlized, we propose two ways of binary operations that utilize GP-GPU. The first method was to divide data load, subtraction and conversion, data store. The second method was processed collectibely. The second method was 2.52 times faster than the first method. After synthesizing the GP-GPU to the FPGA, the GP-GPU on the binarization were compared with the binarization on the ODROID XU. The binarization on the GP-GPU was 1.89 times faster than the binarization on the ODROID XU.
본 논문에서는 적은 면적의 GP-GPU에서 성능을 향상시키기 위한 방법을 제안한다. 본 논문에서는 superscalar와 같이 과도하게 스케줄링 복잡성을 증가시키지 않는 대신 단순한 코어의 수를 늘려 성능을 극대화 시키는 방법을 제안한다. GP-GPU를 구성하는 Stream Processor의 구조를 단순화한다. 또한, Warp Schedule에서 thread 할당을 어플리케이션에 적합한 방법을 개발하여 성능을 개선한다. 성능을 검증하는 방안으로 neural network의 한 분야인 딥러닝에 대한 스레드 할당방식을 제안한다. Neural Network 알고리즘의 경우 Intel CPU 대비 90%에서 ARM Cortex-A15 4 core 대비 98% 성능 향상을 확인할 수 있었다.
본 논문에서는 MIPS 아키택처 기반 펌웨어의 정적분석 환경을 구축하기 위한 방법으로, $gp 레지스터와 페이지 입상도를 활용한 베이스 주소 후보군 선정 방식을 제안한다. 해당 연구는 기존 연구의 귀납적 추론을 통한 베이스 주소 후보군 선정 방식의 단점인 베이스 주소 탐색 시간 단축을 위한 방법으로 기존 베이스 주소 후보군 선정방식 내 $gp 레지스터를 탐색의 기준점을 바탕으로 페이지 단위의 탐색을 수행하는 방법을 제시한다. 이후, 제시된 방법을 바탕으로 베이스 주소탐색 도구를 구현 및 정적분석 환경구축을 통해 대상 도구의 타당성을 증명하고자 한다. 본 논문에서 제시된 방법은 기존 귀납적 추론을 통한 후보군 선정 방안보다 속도 면에서 더 우수함을 나타낸다.
Communications for Statistical Applications and Methods
/
제16권3호
/
pp.463-477
/
2009
극단치 분포의 모수 추정방법으로 최우추정법, 확률가중적률법, 회귀분석법은 기존 연구에서 활발하게 적용되어져 왔다. 그러나 이들 세 가지 추정방법 가운데, 회귀분석법의 우수성은 엄격하게 평가되어진 적이 없다. 본 논문에서는 몬테칼로 시뮬레이션을 통하여 Generalized Extreme Value(GEV) 분포와 Generalized Pareto(GP) 분포의 모수 추정에 회귀분석법 및 다른 추정방법을 적용하여 비교 연구한다. 시뮬레이션 결과, 표본의 크기가 작은 경우 회귀분석 법은 GEV 분포의 위치모수 추정시 편의 측면과 효율성 측면에서 다른 방법보다 우수한 경향을 나타내었다. GP 분포의 규모모수 추정시에는 표본의 크기 가 작을 경우 회귀분석법이 다른 방법보다 작은 편의를 나타내었다. 회귀분석법은 표본의 크기 가 작거나 적당히 큰 경우에도 GEV 분포나 GP 분포의 형태모수 추정시에 형태모수의 값이 -0.4일 경우, 다른 방법보다 우수한 경향을 나타내었다.
A ginseng preparation (GP) consisting of ginseng ex., lycium fructus ex., four kinds of vitamines and caffein was evaluated for acute toxicity and general pharmacology. Average lethal doses $(LD_{50})$ of GP in male mice were 2,988mg/kg (i.p.) and more than 3g/kg (p.o.). In dosage of 300 and 900mg/kg (p.o.) showed no analgesic activity in both tests of the writhing method induced by acetic acid and of tail pressure method and no effect on the pentetrazole-induced convulsion. However, it appeared to have a hypothermic action only in dose of 900mg/kg. The duration of hypnosis induced by hexobarbital sodium in mice was shortened by GP, being probably due to caffein. GP Produced no marked contraction of isolated ileum and uterus in high concentrations of up to $1{\pm}10^{-3}g/ml$. These results suggested that GP did not show any considerable central nervous depressant activity and exhibited very weak actue toxicity in mice.
본 논문은 최소한의 학습데이터를 사용하여 비선형의 응답면을 모델링할 수 있는 방안으로 유전적 프로그래밍을(Genetic Programming, GP)의 사용을 모색하였다. 이때 대두되는 가장 큰 문제는 GP 트리가 부족한 학습 데이터 때문에 심한 Overfilling 현상을 보인다는 점이다.이를 극복하기 위한 방법으로 DDBS (Directional Derivative-Based Smoothering) 기법을 제안하였고, 유용성을 검증하기 위해서 4 가지 응용 예를 보였다.
3D 그래픽 처리 과정은 크게 지오메트리 단계와 렌더링 단계로 구분된다. 본 논문에서는 듀얼페이즈 멀티코어 GP-GPU에서 지오메트리 처리를 가속화시키기 위한 방법을 제안한다. GP-GPU의 SIMD, 듀얼페이즈 구조를 이용한 병렬적 데이터 처리와 메모리 프리패치를 이용하여, 지오메트리 처리를 가속화 시킬 수 있었으며, 모든 기능을 사용할 시 19%의 성능 향상을 나타내었다.
본 논문은 도시기상모델인 전산유체역학모델(CFD_NIMR)을 GP-GPU에서 실행시키기 위해 CUDA Fortran 병렬프로그램을 구현하였다. GP-GPU는 원래 PCI 카드 형태의 그래픽 처리 장치이지만 저비용, 저전력으로 대량의 계산을 초고속으로 수행할 수 있는 일반 계산 가속기이다. 모델을 단일 Intel XEON 2.0 GHz CPU에서 실행한 결과와 Nvidia Tesla C1060 GPU에서 실행한 성능을 비교하였을 때 GP-GPU에서 15배 정도의 빠른 속도를 보였다. 또한 다중 CPU를 사용한 MPI 병렬프로그램과 비교한 경우에도 GP-GPU에서 보다 더 효율적인 성능을 보였다. 본 논문에서 제시한 프로그램 방식은 유사한 구조를 가진 수치모델을 GP-GPU 병렬 프로그램으로 구현하는데 쉽게 적용할 수 있을 것으로 기대한다.
A linear regression is widely used for prediction problem, but it is hard to manage an irregular nature of nonlinear system. Although nonlinear regression methods have been adopted, most of them are only fit to low and limited structure problem with small number of independent variables. However, real-world problem, such as weather prediction required complex nonlinear regression with large number of variables. GP(Genetic Programming) based evolutionary nonlinear regression method is an efficient approach to attach the challenging problem. This paper introduces the improvement of an GP based nonlinear regression method using ADF(Automatically Defined Function). It is believed ADFs allow the evolution of modular solutions and, consequently, improve the performance of the GP technique. The suggested ADF based GP nonlinear regression methods are compared with UM, MLR, and previous GP method for 3 days prediction of wind speed using MOS(Model Output Statistics) for partial South Korean regions. The UM and KLAPS data of 2007-2009, 2011-2013 years are used for experimentation.
Multidrug resistance (MDR) is one of the main obstacles in the chemotherapy of cancer. MDR is associated with the over expression of P-glycoprotein (P-gp), resulting in increased efflux of chemotherapy from cancer cells. Inhibiting P-gp as a method to reverse MDR in cancer patients has been studied extensively, but the results have generally been disappointing. First-generation agents were limited by unacceptable toxicity, whereas second-generation agents had better tolerability but were confounded by unpredictable pharmacokinetic interactions and interactions with other transporter proteins. Third-generation inhibitors have high potency and specificity for P-gp. Furthermore, pharmacokinetic studies to date have shown no appreciable impact on drug metabolism and no clinically significant drug interactions with common chemotherapy agents. Third-generation P-gp inhibitors have shown promise in clinical trials. The continued development of these agents may establish the true therapeutic potential of P-gp-mediated MDR reversal.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.