• Title/Summary/Keyword: GMR spin valve

Search Result 58, Processing Time 0.029 seconds

Characteristics of GMR-SV Sensor for Measurement of Mineral Contents in Edible Water

  • Kim, Da-Woon;Lee, Ju-Hee;Kim, Min-Ji;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.80-85
    • /
    • 2009
  • The mineral dissolution sensor system using GMR-SV and glass/Mg(200 nm) was prepared and characterized. The magnetic field sensitivity of GMR-SV to microscopic magnetic variation was about 0.8%/Oe. The change that occurs when Mg-film dissolves in water, the solubility of water, which is one of the basic properties of mineral water, was sensed by measuring the subtle variation of an electric current. In the case of edible water with Mg mineral added, bubbles were generated on the surface of the Mg film in the first 45 minutes, and the number of drops that were dissolved more rapidly than with the tap and DI waters later reduced to zero. For the edible water samples that each had different mineral Mg concentrations, the Mg solubility speed significantly differed. After injecting Mg film into the edible water, the magnetoresistance of the output GMR-SV signal decreased from a maximum of $45.4\;{\Omega}$ to a minimum of $43.6\;{\Omega}$. The measurement time was within 1 min, giving the rate of change ${\Delta}R/{\Delta}t=0.18\;{\Omega}/s$. This measurement system can be applied to develop a mineral Mg solubility GMR-SV sensor that can be used to sense the change from edible water to reduced alkali.

Magnetic Sensitivity Depending on Width of IrMn Spin Valve Film Device (IrMn 스핀밸브 박막소자의 폭 크기에 의존하는 자장감응도)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.41-44
    • /
    • 2010
  • The Cu thickness dependence of magnetic sensitivity for the NiFe/Cu/NiFe/IrMn spin valve multilayer was investigated. The magnetic properties measured by minor MR curves for the Ta(5 nm)/NiFe(8 nm)/Cu(3.5 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm) multilayer is MR = 1.46 %, MS = 2.0 %/Oe, $H_c\;=\;2.6\;Oe$, and $H_{int}\;=\;0.1\;Oe$. The magnetic sensitivities of GMR-SV devices with ten different widths and a same length of $4.45\;{\mu}m$ by fabricated by photo lithography decreased from 0.3 %/Oe to 0.06%/Oe as from a width of $10\;{\mu}m$ to $1\;{\mu}m$.

A Study on the Analysis of Magnetoresistive Behavior in Giant Magnetoresistive Spin Valve Trilayer Films (거대자기저항 스핀밸브 삼층박막의 자기저항 거동 해석에 관한 연구)

  • 김형준;이병일;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.224-230
    • /
    • 1998
  • The relationships between R-H curves of gaint magnetoresistance (GMR) spin valve trilayer films and M-H curves of each magnetic layer consisting of the trilayer films were analyzed and simple formula representing the relations between the curves were suggested for theoretical analysis and study of magnetoresistance (MR) in those films, especially where the MR is from the difference of coercivity. Using two kinds of NiFe/Cu/Co films, which had been deposited on Cu(50 $\AA$)/Si(111, 4$^{\circ}$ tilt-cut) and Cu(50 $\AA$)/glass, R-H and M-H curves were measured and compared with the calculated ones, which were obtained by appying the M-H curves of single NiFe and Co films, deposited on the same substrates, to the previously reported single-domain and multi-domain models. The calcuated ones were well consistent with the measured ones and the suggested simple relationships between R-H and M-H curves are thought to be very useful for the deep understanding of MR behavior and the reasonable approach to improve MR properties in GMR spin valve trilayer films.

  • PDF

Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channel and GMR-SV Device

  • Park, Ji-Soo;Kim, Nu-Ri;Jung, Hyun-Jun;Khajidmaa, Purevdorj;Bolormaa, Munkhbat;Lee, Sang-Suk
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2015.05a
    • /
    • pp.161-163
    • /
    • 2015
  • The micro device, coil, and channel for the biosensor integrated with the GMR-SV device based on the antiferromagnetic IrMn layer was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ passed on the micro channel, the movement of RBC + ${\mu}Beads$ is controlled by the electrical AC input signal. The RBC + ${\mu}Beads$ having a micro-magnetic field captured above the GMR-SV device is changed as the output signals for detection status. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property as the membrane's deformation of RBC coupled to magnetic beads.

  • PDF

Post-annealing Effect of Giant Magnetoresistance-Spin Valve Device for Sensor (센서용 거대자기저항 스핀밸브소자의 열처리 효과)

  • Lee, Sang-Suk;Park, Sang-Hyun;Soh, Kwang-Sup;Joo, Ho-Wan;Kim, Gi-Wang;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.172-177
    • /
    • 2007
  • In order to detect of the magnetic property in the cell unit, we studied the GMR-SV (giant magnetoresistance-spin valves) biosensor, which was depended on the micro patterned features according to two easy directions of longitudinal and transversal axes. Here, the multi layer structure was glass/NiO/NiFe/CoFe/Cu/CoFe/NiFe. The uniaxial anisotropy direction was applied to the patterned biosensor during the deposition and vacuum post-annealing at $200^{\circ}C$ under the magnitude of 300 Oe, respectively. Considering the magnetic shape anisotropy effect, the size of micro patterned biosensor was a $2{\times}5{\mu}m^2$ after the photo lithography process. By our experimental results, we confirmed that the best condition of GMR-SV biosensor should be the same direction of the axis sensing current and the easy axis of pinned NiO/NiFe/CoFe triple layer oriented to the width direction of device, and the direction of the easy axis of free CoFe/NiFe bilayer was according to the longitudinal direction of device.

Magnetoresistive of (NiFe/CoFe)/Cu/CoFe Spin-Valvec ((NiFe/CoFe)/Cu/CoFe Spin-Valve 박막의 자기저항 특성)

  • 오미영;이선영;이정미;김미양;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.265-273
    • /
    • 1997
  • The MR ratios and the exchange biasing field and interlayer coupling field were investigated in $Ni_{91}Fe_{19}/Co_{90}Fe_{10}/Cu/Co_{90}Fe_{10}/NiO$ spin-valve sandwiches grown on antiferromagnetic NiO films as a function of the NiO thickness, the thickness of Cu and pinning layer $Co_{90}Fe_{10}$. The spin-valve sandwiches were deposited on the Corning glass 7059 by means of the 3-gun dc and 1-gun rf magnetron sputtering at a 5 mtorrpartial Ar pressure and room temperature. The deposition field was 50 Oe. The MR curve was measured by the four-terminal method with applied magnetic soft bilayer [NiFe/CoFe] (90$\AA$) decreased dramatically to less than 10 Oe when the NiFe/CoFe bilayer used an NiFe bilayer thicker that 20$\AA$. So NiFe layer improved the softmagnetic properties in the NiFe/CoFe bilayer. The GMR ratio and the magnetic field sensitivity of the spin-valve film $Ni_{91}Fe_{19}(40{\AA})/Co_{90}Fe_{10}(50{\AA}) /Cu(30{\AA})/Co_{90}Fe_{10}(35{\AA})/NiO(800{\AA})$ was 6.3% and about 0.5 (%/Oe), respectively. The MR ratio had 5.3% below an annealing temperature of 20$0^{\circ}C$ which slowly decreased to 3% above 30$0^{\circ}C$. The large blocking temperature of the spin-valve film was taken (as being) due to the good stability of the NiO films. Thus, the spin-valve films with a free NiFe/CoFe layer clearly had a high large GMR output and showed a effective magnetic field sensitivity for a suitable spin-valve head material.

  • PDF

Effects of Rapid Thermal Annealing on Thermal Stability of FeMn Spin Valve Sensors

  • Park, Seung-Young;Choi, Yeon-Bong;Jo, Soon-Chul
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.52-57
    • /
    • 2005
  • In this research, magnetoresistance (MR) ratio (MR), resistivity, and exchange coupling field $(H_{ex})$ behaviors for sputter deposited spin valves with FeMn antiferromagnetic layer have been extensively investigated by rapid thermal annealing (RTA) as well as conventional annealing (CA) method. 10 s of RTA revealed that interdiffusion was not significant up to $325^{\circ}C$ at the interfaces between the layers when the RTA time was short. The MR of FeMn spin valves were reduced when the spin valves were exposed to temperature of $250^{\circ}C$, even for a short time period of 10 s prior to CA. $H_{ex}$ was maintained up to $325^{\circ}C$ of CA when the specimen was subjected to 10 s of RTA at $200^{\circ}C$ prior to CA, which is $25^{\circ}C$ higher than the result obtained from the CA without prior RTA. Therefore, the stability of $H_{ex}$ could be enhanced by a prior RTA before performing CA up to annealing temperature of $325^{\circ}C$. MR and sensitivity of the specimens annealed without magnetic field up to $275^{\circ}C$ were recovered to the values prior to CA, but $H_{ex}$ was not recovered. This means that reduced MR sensitivity and MR during the device fabrication can be recovered by a field RTA.

Effects of a Au-Cu Back Layer on the Properties of Spin Valves

  • In, Jang-Sik;Kim, Sang-Hoon;Kang, Jae-Yong;Tiwari, Ajay;Hong, Jong-Ill
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.118-123
    • /
    • 2007
  • We have studied the effect of Au-Cu back layer system ${\sim}10{\AA}$ thick on the properties of a spin valve. The back layers were Cu, Au, co-sputtered $Cu_xAu_{1-x}$, laminated $[Au/Cu]_n$. and bi-layer [Au/Cu]. When Au was added to the Cu, the resistance of the spin valve abruptly increased most likely due to impurity scattering. The GMR values were not increased significantly for all the structures. In the case of co-sputtered $Cu_xAu_{1-x}$, the changes in the resistance, ${\Delta}R$, was increased at a composition of ${\sim}Au_{0.5}Cu_{0.5}$. This increase in ${\Delta}R$ is due to increase in the resistance and not from the enhanced spin-dependent scattering. The structural analyses showed that the orthorhombic $Au_{0.5}Cu_{0.5}$ was formed in the back layer instead of the face-centered tetragonal $Au_{0.5}Cu_{0.5}$ as we expected. Thermal annealing over $400^{\circ}C$ may be required to have face-centered tetragonal in the $10{\AA}$ thick ultra-thin film. In the case of a laminated or bi-layered back layer, the properties of the spin valve were improved, which may be attributed to the increase in the mean free path of conduction electrons.