• Title/Summary/Keyword: GM-CSF receptor

Search Result 16, Processing Time 0.036 seconds

Plasma G-CSF and GM-CSF Concentration and Amount of Their Receptors on the Granulocyte in Kawasaki Disease (가와사키병 환아의 혈장내 G-CSF와 GM-CSF 농도 및 과립구에서의 이들 수용체의 발현 변화)

  • Yoo, Young-Kyoung;Lee, Gibum;Kim, Hyun-Hee;Kim, Soo-Young;Kim, You-Jeong;Lee, Wonbae
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.4
    • /
    • pp.376-381
    • /
    • 2003
  • Purpose : This study aimed to demonstrate the possible pathogenesis of granulopoiesis in patients of Kawasaki disease(KD) using quantitative analysis of G-CSF, GM-CSF and their CSFr. Methods : The plasma levels of G-CSF, GM-CSF, G-CSFr and GM-CSFr were studied in 14 patients in the acute phase of KD; 13 children with normal peripheral white blood cell counts were used as the normal control group. The plasma concentration of G-CSF, GM-CSF were analyzed by ELISA. The G-CSFr and GM-CSFr on the peripheral granulocytes were analyzed by a quantitative flow cytometric assay and QuantiBRITE, and the quantitative changes of receptors which did not combine with G-CSF and GM-CSF were measured. Results : The total number of leukocytes in KD was similar to normal control group, but the leukocytes increased according to the number of neutrophils. The plasma concentration of G-CSF were decreased similar to normal control group(P=0.133), but that of GM-CSF decreased more than the normal control group(P=0.227). The quantity of G-CSFr, GM-CSFr were revealed to be no less than the normal control(P=0.721, P=0.912). After incubation with excessive G-CSF, the expressed G-CSFr on the neutrophils were decreased in both groups(P=0.554). The quantities of expressions of GM-CSFr on the neutrophil after incubation with the excessive GM-CSF were always increased in both groups(P=0.255). The amount of GM-CSFr of neutrophils are in proportion to total white blood cells (r=0.788, P=0.035), but it wasn't in the case of KD(P=0.644). Conclusion : The leukocytosis in KD that mediated by increasing neutrophil was not correlated with the plasma concentrations of G-CSF and GM-CSF, and the amount of expression of G-CSFr and GM-CSFr on granulocyte. It is possible that the reduction of concentration of GM-CSF results by increasing the active GM-CSFr.

Mouse Granulocyte-marcrophage Colony-stimulating Factor Enhances Viability of Porcine Embryos in Defined Culture Conditions

  • S. H Jun;X. S Cui;Kim, N. H
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.71-71
    • /
    • 2003
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifunctional cytokine that has been implicated in the regulation of pre-implantation embryo development across several species. The aim of this study was to determine the effects of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) on development of porcine parthenotes and nuclear transferred embryos, and on their expression of implantation-related genes. In the presence of bovine serum albumin, mGM-CSF did not increase the percentage of oocytes that developed to the blastocyst stage and at day 7 did not increase oocyte cell number. Addition of 10 mM GM-CSF to protein-free culture medium significantly increased the compaction and blastocoel formation of 1- to 2-cell parthenotes and cloned embryos developing in vitro. However, cell number was not increased when they were cultured in the presence of GM-CSF. Semi-quantitative reverse transcripts polymerase chain reaction (RT-PCR) revealed that mGM-CSF enhances mRNA expression of the leukemia inhibitory factor receptor, but does not influence interleukin-6 or sodium/glucose co-transporter protein gene expression in blastocyst stage parthenotes. These results suggest that mGM-CSF may enhance viability of porcine embryos developing in vitro in a defined culture medium.

  • PDF

Plasma G-CSF and GM-CSF Concentrations and Expression of their Receptors on the Granulocyte in Children with Leukocytosis (백혈구 증가증 환아의 혈장내 G-CSF와 GM-CSF의 농도 및 과립구에서의 이들 수용체의 발현)

  • Choi, Won Seok;Ryu, Kyung Hwan;Kim, You Jeong;Kim, So Young;Kim, Hyun Hee;Lee, Wonbae
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.3
    • /
    • pp.271-276
    • /
    • 2003
  • Purpose : Granulocyte-colony stimulating factor(G-CSF) and granulocyte macrophage-colony stimulating factor(GM-CSF) are principal cytokines in granulopoiesis and their physiologic effects are mediated through binding to specific cell surface receptors. Although it is known that the level of serum G-CSF and GM-CSF, and presentation of the receptors are increased in infectious diseases, there have been no studies to find the correlation between the granulopoiesis and leukocytosis. This study was designed to measure G-CSF and GM-CSF in leukocytosis and in control and to demonstrate the possible pathogenesis of granulopoiesis in leukocytosis using quantitative analysis of G-CSF, GM-CSF and their CSFr. Methods : The plasma levels of G-CSF, GM-CSF of 13 children without leukocytosis and 14 children with leukocytosis were measured. Counts of cell surface G-CSFr and GM-CSFr were measured by combining anti G-CSFr and anti GM-CSFr monoclonal antibodies to their respective receptors by using quantitative flow cytometric assay. Results : There was no significant difference betweeen the plasma concentration of G-CSF and GM-CSF in acute leukocytosis and in the control group. However, levels of G-CSFr in acute leukocytosis decreased significantly compared to the control(P=0.012) and the levels of GM-CSFr in both groups revealed no significant difference. Conclusion : Increase in the number of leukocyte in leukocytosis was mediated by increasing the number of neutrophil, and increased plasma concentration of G-CSF may be the cause of neutrophilia. But GM-CSF did not have any influence on leukocytosis.

Inhibitory mechanism of Korean Red Ginseng on GM-CSF expression in UVB-irradiated keratinocytes

  • Chung, Ira;Lee, Jieun;Park, Young Sun;Lim, Yeji;Chang, Do Hyeon;Park, Jongil;Hwang, Jae Sung
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.322-330
    • /
    • 2015
  • Background: UV-irradiated keratinocytes secrete various proinflammatory cytokines. UV-induced skin damage is mediated by growth factors and proinflammatory cytokines such as granulocyte macrophage colony stimulating factor (GM-CSF). In a previous study, we found that the saponin of Korean Red Ginseng (SKRG) decreased the expression of GM-CSF in UVB-irradiated SP-1 keratinocytes. In this study, we attempted to find the inhibitory mechanism of SKRG on UVB-induced GM-CSF expression in SP-1 keratinocytes. Methods: We investigated the inhibitory mechanism of SKRG and ginsenosides from Panax ginseng on UVB-induced GM-CSF expression in SP-1 keratinocytes. Results: Treatment with SKRG decreased the expression of GM-CSF mRNA and protein induced by irradiation of UVB in SP-1 keratinocytes. The phosphorylation of ERK was induced by UVB at 10 min, and decreased with SKRG treatment in SP-1 keratinocytes. In addition, treatment with SKRG inhibited the UVB-induced phosphorylation of epidermal growth factor receptor (EGFR), which is known to be an upstream signal of ERK. From these results, we found that the inhibition of GM-CSF expression by SKRG was derived from the decreased phosphorylation of EGFR. To identify the specific compound composing SKRG, we tested fifteen kinds of ginsenosides. Among these compounds, ginsenoside-Rh3 decreased the expression of GM-CSF protein and mRNA in SP-1 keratinocytes. Conclusion: Taken together, we found that treatment with SKRG decreased the phosphorylation of EGFR and ERK in UVB-irradiated SP-1 keratinocytes and subsequently inhibited the expression of GM-CSF. Furthermore, we identified ginsenoside-Rh3 as the active saponin in Korean Red Ginseng.

Effect of GM-CSF on Porcine Parthenotes Development (GM-CSF가 돼지 처녀 생식 배아 발달에 미치는 영향)

  • Lee, Jae-Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.365-370
    • /
    • 2015
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important hematopoietic growth factor and immune modulator. The aim of this study was to evaluate the effects of GM-CSF on the development and cell number of porcine parthenotes, as well as on their expression of implantation-related genes. In the present study, porcine parthenogenatic activated embryos were cultured in a protein-free culture medium in the absence or presence of 5, 10 and 20 ng/ml GM-CSF for 7 days. The percentage of blastocyst formation, total cell number and gene expressions were evaluated. The results showed that the addition of 20 ng/ml GM-CSF to protein-free culture medium significantly increased the blastocoel formation ($26.14{\pm}2.03%$ vs. $3.55{\pm}0.51%$, p < 0.05). In addition, the cell number also increased when they were cultured in the presence of 20 ng/ml GM-CSF ($43.51{\pm}3.6%$ vs. $30.68{\pm}5.51%$, p < 0.05). A real time reverse transcripts polymerase chain reaction (RT-PCR) showed that GM-CSF enhances mRNA expression of the interleukin-6, but does not influence the leukemia inhibitory factor (LIF) receptor mRNA expression in blastocyst stage parthenotes. These results suggest that GM-CSF may enhance the viability of porcine embryos developing in vitro in a defined culture medium.

Tumor Necrosis Factor Receptor (TNFR)-associated factor 2 (TRAF2) is not Involved in GM-CSF mRNA Induction and TNF-Mediated Cytotoxicity

  • Kim, Jung-Hyun;Cha, Myung-Hoon;Lee, Tae-Kon;Seung, Hyo-Jun;Park, Choon-Sik;Chung, Il-Yup
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.111-116
    • /
    • 1999
  • Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) is known to act as a signal transducer that connects TNFR2 to its downstream effector functions such as proliferation of thymocytes, regulation of gene expression, and cell death. TRAF2 consists of largely two domains, the N-terminal half that contains a signal-emanating region and the C-terminal half that is responsible for binding to the intracellular region of TNFR2. In this study, we examined the possible roles of TRAF2 in granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression and cell death. A truncated mutant of TRAF2 ( 2-263) that contains only a C-terminal half was generated, and transiently transfected to the A549 cell, a human lung cancer cell line, and L929 cell, a murine TNF-sensitive cell line. GM-CSF mRNA was induced in untransfected A540 cells both in dose- and time-dependent manner upon the exposure of TNF. However, neither the full length TRAF2 nor the mutant altered GM-CSF mRNA production regardless of the presence or absence of TNF. Furthermore, neither TRAF2 versions significantly changed the cytotoxic effect of TNF on L929 cells. These data suggest that TRAF2 may not be involved in the signal transduction pathway for GM-CSF gene induction and cell death mediated by TNF.

  • PDF

The Effect of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) on The Expression of IL-1 System mRNA in Mouse Embryos

  • Kim, D. H.;S. S. Ko;Lee, H. C.;Lee, H. H.;Kim, S. S.;Lee, H. J.;B. C. Yang;Park, S. B.;W. K. Chang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.52-52
    • /
    • 2003
  • Granulocyte-macrophage colony stimulating factor (GM-CSF) is synthesized in the female reproductive tract and has been shown to play an important role in human and murine embryo development and implantation. However, the mechanism of GM-CSF on the embryo development is unknown. Recent studies suggested that GM-CSF may be increase the expression of implantation relented genes, such as interleukin-1 (IL-1) system. Our aim of this study was to compare the interleukin-1$\alpha$ (IL-1$\alpha$), interleukin-1$\beta$ (IL-1$\beta$) and interleukin-1 receptor antagonist (IL-lra) mRNA between the GM-CSF supplemented group and control group in mouse embryos. Mouse 2-cell embryos were cultured in P-1 medium supplemented with or without mouse GM-CSF (10 ng/ml). The number of total and apoptotic cell in blastocyst were assessed by TUNEL. And then, the expression of IL-1$\alpha$, IL-1$\beta$ and IL-1ra mRNA in blastocyst were examined by RT-PCR.

  • PDF

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon ($IFN-{\alpha}$), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.

CCR5-mediated Recruitment of NK Cells to the Kidney Is a Critical Step for Host Defense to Systemic Candida albicans Infection

  • Nu Z. N. Nguyen;Vuvi G. Tran;Saerom Lee;Minji Kim;Sang W. Kang;Juyang Kim;Hye J. Kim;Jong S. Lee;Hong R. Cho;Byungsuk Kwon
    • IMMUNE NETWORK
    • /
    • v.20 no.6
    • /
    • pp.49.1-49.15
    • /
    • 2020
  • C-C chemokine receptor type 5 (CCR5) regulates the trafficking of various immune cells to sites of infection. In this study, we showed that expression of CCR5 and its ligands was rapidly increased in the kidney after systemic Candida albicans infection, and infected CCR5-/- mice exhibited increased mortality and morbidity, indicating that CCR5 contributes to an effective defense mechanism against systemic C. albicans infection. The susceptibility of CCR5-/- mice to C. albicans infection was due to impaired fungal clearance, which in turn resulted in exacerbated renal inflammation and damage. CCR5-mediated recruitment of NK cells to the kidney in response to C. albicans infection was necessary for the anti-microbial activity of neutrophils, the main fungicidal effector cells. Mechanistically, C. albicans induced expression of IL-23 by CD11c+ dendritic cells (DCs). IL-23 in turn augmented the fungicidal activity of neutrophils through GM-CSF production by NK cells. As GM-CSF potentiated production of IL-23 in response to C. albicans, a positive feedback loop formed between NK cells and DCs seemed to function as an amplification point for host defense. Taken together, our results suggest that CCR5-mediated recruitment of NK cells to the site of fungal infection is an important step that underlies innate resistance to systemic C. albicans infection.

House Dust Mite Allergen Inhibits Constitutive Neutrophil Apoptosis by Cytokine Secretion via PAR2/PKCδ/p38 MAPK Pathway in Allergic Lymphocytes (알레르기 림프구에서 집먼지진드기 알러젠의 PAR2/PKCδ/p38 MAPK 경로를 통한 사이토카인 증가는 호중구의 세포고사를 억제시킨다)

  • Lee, Na Rae;Lee, Ji-Sook;Kim, In Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.188-195
    • /
    • 2016
  • Neutrophils and lymphocytes are essential inflammatory cells in the pathogenesis of allergy. In this study, we evaluated the role of house dust mite (HDM) in the interaction between allergic lymphocytes and neutrophils. The extract of Dermatophagoides pteronissinus (DP) showed a stronger anti-apoptotic impact on neutrophil apoptosis in the coculture of allergic neutrophils with allergic lymphocytes when compared with that in allergic neutrophils alone. DP increased IL-6, IL-8, MCP-1, and GM-CSF in allergic lymphocytes, and the increased cytokines were inhibited by rottlerin-an inhibitor of the protein kinase C (PKC) ${\delta}$, as well as by SB202190-a p38 MAPK inhibitor. DP activated p38 MAPK in a time-dependent manner. The activation of p38 MAPK was suppressed by PAR2i, which is a protease-activated receptor (PAR) 2 inhibitor, and rottlerin. Both aprotinin-a serine protease inhibitor-and E64-a cysteine protease inhibitor-were not effective on cytokine secretion of lymphocytes. These results, despite increased cytokines in allergic lymphocytes via DP, did not show any differences between asthma and allergic rhinitis. Molecules, including cytokines, released by DP in lymphocytes inhibited the migration of neutrophils. This finding may further elucidate the pathogenic mechanism of allergic diseases due to HDM.