• Title/Summary/Keyword: GM crops

Search Result 90, Processing Time 0.023 seconds

Influence of gene flow from GM to non-GM soybeans by the size of the pollen donor

  • Lee, Bumkyu;Oh, Sung-Dug;Chang, Ancheol
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.591-600
    • /
    • 2018
  • The use of genetically modified (GM) crops has increased continuously over the world, and concerns about the potential risks of GM crops have also risen. Although, until now, GM crops have not been cultivated commercially in Korea, it is necessary to develop technology for the safe evaluation of GM crops. In this study, we investigated the influence of gene flow from GM to non-GM soybeans by the size of the pollen donor. In the experimental design, GM soybeans were placed in the center as a pollen donor and non-GM soybeans were placed in four directions as the pollen receivers. Three sizes of pollen donor were designed as $90cm{\times}90cm$, $180cm{\times}180cm$, and $360cm{\times}360cm$. A total 22,719 seeds were collected from non-GM soybeans, and 14 hybrids were finally obtained through herbicide resistance screening and PCR analysis. The highest hybridization rate was 0.78% at a distance of 15 cm from a $360cm{\times}360cm$ GM pollen donor, and the farthest distance of hybridization was 180 cm from a GM pollen donor which was $360cm{\times}360cm$ in size. Ten hybrids were found among the 14 hybrids at the $360cm{\times}360cm$ pollen donor size, 3 hybrids at $180cm{\times}180cm$, 1 hybrid at $90cm{\times}90cm$. From these results, it could be concluded that with the larger pollen donor size, more hybridization occurred in soybeans.

A Comparison Between the Agricultural Traits of GM and Non-GM Rice in Drought Stress and Non-stress Conditions (건조 스트레스 환경과 스트레스가 없는 환경에서 GM벼와 non-GM벼의 농업 형질 비교)

  • Racheal, Nafula;Park, Jae-Ryoung;Jeon, Dong Won;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.411-419
    • /
    • 2020
  • The development of GM crops has gained significant economic importance, and the number of countries cultivating commercial GM crops has continuously increased since the 1960s. Globally, the area given to cultivating GM soybean, maize, cotton, and canola alone had reached 114 million hectares by 2007. Although the economic importance of cultivating and commercializing GM crops has increased, there is still a need to assess their agricultural traits in comparison to non-GM produce. This study evaluated the agricultural traits of GM rice containing the drought-tolerant gene CaMsrB2 and standard rice to investigate any unintended effects of genetic engineering. The GM and non-GM rice were compared in terms of various agricultural traits in a drought greenhouse and an irrigated paddy field. There was no statistical difference in the field-grown crops, but there was a statistically significant difference in both tiller number and yield in the greenhouse. These results therefore suggest that GM rice lines containing the CaMsrB2 gene are superior in performance to non-GM rice in drought stress conditions and could be grown in drought-prone areas where drought intolerant rice may not be able to grow.

Development of genetically modified crops based on considerations of risk assessment and management (위해성평가와 관리를 고려한 유전자변형작물 개발의 필요성)

  • Kim, Chang-Gi;Jeong, Soon-Chun;Yoon, Won-Kee;Park, Kee-Woong;Choi, Kyung-Hwa;Kim, Hwan-Mook
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.360-365
    • /
    • 2009
  • Over the last five years, we have conducted research on risk assessment of domestically developed genetically modified (GM) crops and found a number of factors which could delay risk assessment process. In this review, we described such cases and discussed the problem of transgene cassette integration, the lack of information on vectors, the poor quality control in seed production and absence of bioinformatic analysis on amino acid sequence homology before GM crop development. To solve these problems, we have suggested the introduction of the screening system of elite event before risk assessment process and quality control strategies for GM seed production. In addition, we suggested that the developers of GM crops should understand the importance of risk assessment and management for the commercialization of those crops and consider the biological and ecological characteristics of host plants. Consistent communications may need to be established between GM crop developers, risk assessors and risk managers at the initial stages of GM crop development to reduce trial-and-errors.

Soil Microbial Community Assessment for the Rhizosphere Soil of Herbicide Resistant Genetically Modified Chinese Cabbage

  • Sohn, Soo-In;Oh, Young-Ju;Ahn, Byung-Ohg;Ryu, Tae-Hoon;Cho, Hyun-Suk;Park, Jong-Sug;Lee, Ki-Jong;Oh, Sung-Dug;Lee, Jang-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • BACKGROUND: Cultivation of genetically modified(GM) crops rapidly has increased in the global agricultural area. Among those, herbicide resistant GM crops are reported to have occupied 89.3 million hectares in 2010. However, cultivation of GM crops in the field evoked the concern of the possibility of gene transfer from transgenic plant into soil microorganisms. In our present study, we have assessed the effects of herbicide-resistant GM Chinese cabbage on the surrounding soil microbial community. METHODS AND RESULTS: The effects of a herbicide-resistant genetically modified (GM) Chinese cabbage on the soil microbial community in its field of growth were assessed using a conventional culture technique and also culture-independent molecular methods. Three replicate field plots were planted with a single GM and four non-GM Chinese cabbages (these included a non-GM counterpart). The soils around these plants were compared using colony counting, denaturing gradient gel electrophoresis and a species diversity index assessment during the growing periods. The bacterial, fungal and actinomycetes population densities of the GM Chinese cabbage soils were found to be within the range of those of the non-GM Chinese cabbage soils. The DGGE banding patterns of the GM and non-GM soils were also similar, suggesting that the bacterial community structures were stable within a given month and were unaffected by the presence of a GM plant. The similarities of the bacterial species diversity indices were consistent with this finding. CONCLUSION: These results indicate that soil microbial communities are unaffected by the cultivation of herbicide-resistant GM Chinese cabbage within the experimental time frame.

Estimating Farmers' Willingness to Cultivate Genetically Modified Rice and Grass for Feed in Korea (농업인의 사료용 유전자변형 작물 재배 의사 추정)

  • Kim, Seung Gyu;Ryu, Jin;Jung, Jae-Won;Sung, Myung-Hwan;Kim, Tae-Kyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.4
    • /
    • pp.303-308
    • /
    • 2015
  • Cultivating genetically modified (GM) crops is believed to be a practical solution to meet the increasing food demand, but GM crops are not legal in Korea mainly due to food safety issues. Even though the general public might not be ready to consume GM food, GM crops are imported and consumed as food and feed. To analyze farmers's willingness to grow GM crops for feed, a survey was conducted among crop farmers and 640 valid responses were collected by mail. In the questionnaire, the farmers were asked to select either 'yes' or 'no' if they were willing or not willing to cultivate GM rice and GM grass, respectively, under the given hypothetical income increase rate (i.e., 10%, 20%, 30%, 40%, 50%, 60%, or 70%). Logit regression was used to estimate the two dichotomous choices by explanatory variables including hypothetical income increase rate. The results show that farmers are willing to cultivate GM rice and grass when their income is expected to increase by 47% and 43%, respectively.

Development of a multiplex PCR method for identification of four genetically modified maize lines and its application in living modified organism identification

  • Park, Jin Ho;Seol, Min-A;Eum, Soon-Jae;Kim, Il Ryong;Lim, Hye Song;Lee, Jung Ro;Choi, Wonkyun
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.309-315
    • /
    • 2020
  • Advances in biotechnology have led to progress in crop genetic engineering to improve agricultural productivity. The use of genetically modified (GM) crops has increased, as have consumers' and regulators' concerns about the safety of GM crops to human health, and ecological biodiversity. As such, the identification of GM crops is a critical issue for developers and distributors, and their labeling is mandatory. Multiplex polymerase chain reaction (PCR) has been developed and its use validated for the detection and identification of GM crops in quarantine. Herein, we established a simultaneous detection method to identify four GM maize events. Event-specific primers were designed between the junction region of transgene and genome of four GM maize lines, namely 5307, DAS-40278-9, MON87460, and MON87427. To verify the efficiency and accuracy of the multiplex PCR we used specificity analysis, limit of detection evaluation, and mixed certified reference materials identification. The multiplex PCR method was applied to analyze 29 living, modified maize volunteers collected in South Korea in 2018 and 2019. We performed multiplex PCR analysis to identify events and confirmed the result by simplex PCR using each event-specific primer. As a result, rather than detecting each event individually, the simultaneous detection PCR method enabled the rapid analysis of 29 GM maize volunteers. Thus, the novel multiplex PCR method is applicable for living modified organism volunteer identification.

Current status on the development and commercialization of GM plants (국내·외 GM식물의 개발 및 산업화 현황)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.305-312
    • /
    • 2010
  • During a last decade, the introduced traits in commercialized GM crops have been diversified from a simple trait such as herbicide resistance gene or insectresistance gene which are related to the crop production into more complicated traits such as modification of fatty acid or essential amino acid composition, modified coloring pattern of flower. In addition, it was investigated that several other GM crops bearing more refined traits expected to lead next generation are also awaiting for risk assessment (RA) or under field test for the preparation of RA in the near future. These GM crops include abiotic stress resistance including drought or cold, increased biomass, production of bioethanol or diesel, production of pharmaceuticals or functional materials for industrial. In particular, in 2008 and 2009, it was reported that the highest number of GM crops for molecular farming are under developed in laboratory or green house level in all the world. Likewise, in Korea, 171 events from 49 plant species are under developed to introduce several important traits. At present, about 10 events are under field test to select elite lines for RA application. For the first time, herbicide resistance turfgrass developed by Korean research team has been submitted for RA and currently under requested for additional data. Moreover, GM rice resistant to leaf roll (folder) disease is expected as a next event to be submitted for RA application.

Development of the conventional crop composition database for new genetically engineered crop safety assessment (새로운 생명공학작물 안전성 평가를 위한 작물 성분 DB 구축)

  • Kim, Eun-Ha;Lee, Seong-Kon;Park, Soo-Yun;Lee, Sang-Gu;Oh, Seon-Woo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.289-298
    • /
    • 2018
  • The Biosafety Division of the National Academy of Agricultural Science has developed a 'Crop Composition DB' that provides analytical data on commercialized crops. It can be used as a reference in the 'Comparative Evaluation by Compositional Analysis' for the safety assessment of genetically modified (GM) crops. This database provides the composition of crops cultivated in Korea, and thus upgrades the data to check the extent of changes in the compositional content depending on the cultivated area, varieties and year. The database is a compilation of data on the antioxidant, nutrient and secondary metabolite compositions of rice and capsicum grown in two or more cultivation areas for a period of more than two years. Data analysis was conducted under the guidelines of the Association of Official Analytical Chemists or methods previously reported on papers. The data was provided as average, minimum and maximum values to assess whether the statistical differences between the GM crops and comparative non-GM crops fall within the biological differences or tolerances of the existing commercial crops. The Crop Composition DB is an open-access source and is easy to access based on the query selected by the user. Moreover, functional ingredients of colored crops, such as potatoes, sweet potatoes and cauliflowers, were provided so that food information can be used and utilized by general consumers. This paper introduces the feature and usage of 'Crop Composition DB', which is a valuable tool for characterizing the composition of conventional crops.

Development of distinction methods for male-sterile and dwarfism herbicide tolerant Zoysia japonica Steud (웅성불임 및 왜성형질의 제초제저항성 들잔디(zoysia japonica Steud.)의 판별기술 개발)

  • Lee, Bum Kyu;Kang, Hong-Gyu;Ra, Nu Ri;Sun, Hyeon-Jin;Kwon, Yong-Ik;Song, In-Ja;Kim, Chang-Gi;Ryu, Tae-Hun;Park, Kee Woong;Lee, Hyo-Yeon
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.187-191
    • /
    • 2014
  • The cultivation area and use of genetically modified (GM) crops have been increased continuously over the world. Concerns about the potential risks of GM crops are also increasing. Safe management for the development and production of GM crops is required according to Living Modified Organism Act in Korea. Planning about the methods, duration, and frequency of environmental monitoring is also required for commercial use of GM crops. GM Zoysia japonica Steud. (event name: JG21) expressing resistance to glufosinate-ammonium has been generated previously. By using gamma ray treatment to JG21 we also developed male sterility and dwarf Z. japonica (event name: JG21-MS). The objective of this study was to establish the monitoring system for environment release of JG21-MS. In this study we extracted RNA from JG21 and JG21-MS and conducted RAPD (random amplified polymorphic DNA) method to distinguish JG21 and JG21-MS.

Assessment of gene flow from insect-resistant genetically modified rice (Agb0101) to non-GM rice (해충저항성 유전자변형 벼(Agb0101) 유전자 이동성 평가)

  • Oh, Sung-Dug;Yun, Doh-Won;Sohn, Soo-In;Park, Soon Ki;Chang, Ancheol
    • Korean Journal of Breeding Science
    • /
    • v.49 no.3
    • /
    • pp.180-189
    • /
    • 2017
  • Genetically modified (GM) crops have been developed worldwide through the recombinant DNA technology and commercialized by global agricultural companies. Until now, GM crops have not been cultivated commercially in Korea. Commercialization of GM crops requires a compulsory assessment of environmental risk associated with the release of GM crops. This study was conducted to evaluate the frequency of pollen mediated gene flow from Bt transgenic rice (Agb0101) to japonica non-GM rice (Nakdongbyeo), indica non-GM rice (IR36), and weedy rice (R55). A total of 729,917, 596,318 and 230,635 seeds were collected from Nakdongbyeo, IR36, and R55, respectively, which were planted around Agb0101. Selection of the hybrids was determined by repeated spraying of herbicide and Cry1Ac1 immunostrip assay. Finally, the hybrids were confirmed by PCR analysis using specific primer. The hybrids were found in all non-GM rice and out-crossing ranged from 0.0005% at IR36 to 0.0027% at Nakdongbyeo. All of hybrids were located within 1.2 m distance from the Agb0101 rice plot. The meteorological elements including rainfall and temperature during rice flowering time were found to be important factors to determine rice out-crossing rate. Consideration should be taken for many factors like the meteorological elements of field and physiological condition of crop to set up the safety management guideline to prevention of GM crops gene flow.