• Title/Summary/Keyword: GM

Search Result 2,350, Processing Time 0.022 seconds

Influence of insect pollinators on gene transfer from GM to non-GM soybeans (GM 콩의 도입유전자 이동에 미치는 화분 매개충의 영향)

  • Lee, Bumkyu;Kim, Jun Hyeong;Sohn, Soo In;Kweon, Soon Jong;Park, Kee Woong;Chung, Young Soo;Lee, Si Myung
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.159-165
    • /
    • 2015
  • The cultivation area and use of genetically modified (GM) crops have been increased continuously over the world and concerns about the potential risks of GM crops are also increasing. One of the major concern in risk assessment is the possible development of hybrids through interspecific and intergeneric crosses with related species. This study was conducted to investigate the pollinator have an influence on insect-mediated gene transfer from GM soybeans. Hybrid was induced from GM soybeans by honeybee and western flower thrips, and non-GM soybeans were used as pollen receptor. The analysis for gene-flow was conducted by herbicide selection, immunostrip test, and PCR analysis. In the result of the analysis, three hybrids were detected on the distance 15, 75, 105 cm from pollen source in western flower thrips treatment. In honeybee treatment, one hybrid was detected in the farthest distance (300 cm). These results suggested honeybee and western flower thrips have a possibility they can transfer the introduced gene from GM soybeans to non-GM soybeans.

EST-SSR Marker Sets for Practical Authentication of All Nine Registered Ginseng Cultivars in Korea

  • Kim, Nam-Hoon;Choi, Hong-Il;Ahn, In-Ok;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.298-307
    • /
    • 2012
  • Panax ginseng has been cultivated for centuries, and nine commercial cultivars have been registered in Korea. However, these nine elite cultivars are grown in less than 10% of ginseng fields, and there is no clear authentication system for each cultivar even though their values are higher than those of local landraces. Here, we have developed 19 microsatellite markers using expressed gene sequences and established an authentication system for all nine cultivars. Five cultivars, 'Chunpoong', 'Sunpoong', 'Gumpoong', 'Sunun', and 'Sunone', can each be identified by one cultivar-unique allele, gm47n-a, gm47n-c, gm104-a, gm184-a (or gm129-a), and gm175-c, respectively. 'Yunpoong' can be identified by the co-appearance of gm47n-b and gm129-c. 'Sunhyang' can be distinguished from the other eight cultivars by the co-appearance of gm47n-b, gm129-b, and gm175-a. The two other cultivars, 'Gopoong' and 'Cheongsun', can be identified by their specific combinations of five marker alleles. This marker set was successfully utilized to identify the cultivars among 70 ginseng individuals and to select true F1 hybrid plants between two cultivars. We further analyzed the homogeneity of each cultivar and phylogenetic relationships among cultivars using these markers. This marker system will be useful to the seed industry and for breeding of ginseng.

Analysis of Housekeeping Genes in Mice Feeding on GM and non-GM Potatoes (해충저항성 GM감자와 non-GM감자의 Housekeeping gene 발현 분석)

  • Kweon, Mi-Ae;Heo, Jin-Chul;Cho, Hyun-Seok;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.15 no.4
    • /
    • pp.562-567
    • /
    • 2008
  • To develop human risk assessment protocols, we explored housekeeping gene and cytokine expression in mouse spleen cells using Rt-PCR. We normalized housekeeping gene expression by RT-PCR; gene expression was highly uniform in potato leafs and mouse spleen cells. We measured the expression of frequently used housekeeping genes, such as those encoding APRT, $\beta$-tubulin, Actin, Hsp 20.2, Cyclophilin, 18S RNA, Efla, Tbp, GAPDH, $\beta$-actin, Tuba2, Hprt, Cyclophlin A, Tfrc, and RPL13A in mice fed GM or non-GM potatoes. Housekeeping gene expression did not show any significant differences between GM and non-GM potato-fed mice. The murine model of potato-fed mice did not express IL-4 and IL-13 at a significant levels.

Inhibitory mechanism of ginsenoside Rh3 on granulocyte-macrophage colony-stimulating factor expression in UV-B-irradiated murine SP-1 keratinocytes

  • Park, Young Sun;Lee, Ji Eun;Park, Jong Il;Myung, Cheol hwan;Lim, Young-Ho;Park, Chae Kyu;Hwang, Jae Sung
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.274-281
    • /
    • 2020
  • Background: Ultraviolet (UV) goes through the epidermis and promotes release of inflammatory cytokines in keratinocytes. Granulocyte-macrophage colony-stimulating factor (GM-CSF), one of the keratinocyte-derived cytokines, regulates proliferation and differentiation of melanocytes. Extracellular signal-regulated kinase (ERK1/2) and protein kinase C (PKC) signaling pathways regulate expression of GM-CSF. Based on these results, we found that ginsenoside Rh3 prevented GM-CSF production and release in UV-B-exposed SP-1 keratinocytes and that this inhibitory effect resulted from the reduction of PKCδ and ERK phosphorylation. Methods: We investigated the mechanism by which ginsenoside Rh3 from Panax ginseng inhibited GM-CSF release from UV-B-irradiated keratinocytes. Results: Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or UV-B induced release of GM-CSF in the SP-1 keratinocytes. To elucidate whether the change in GM-CSF expression could be related to PKC signaling, the cells were pretreated with H7, an inhibitor of PKC, and irradiated with UV-B. GM-CSF was decreased by H7 in a dose-dependent manner. When we analyzed which ginsenosides repressed GM-CSF expression among 15 ginsenosides, ginsenoside Rh3 showed the largest decline to 40% of GM-CSF expression in enzyme-linked immunosorbent assay. Western blot analysis showed that TPA enhanced the phosphorylation of PKCδ and ERK in the keratinocytes. When we examined the effect of ginsenoside Rh3, we identified that ginsenoside Rh3 inhibited the TPA-induced phosphorylation levels of PKCδ and ERK. Conclusion: In summary, we found that ginsenoside Rh3 impeded UV-B-induced GM-CSF production through repression of PKCδ and ERK phosphorylation in SP-1 keratinocytes.

Effects of Berberine on Lymphocyte Proliferation and GM-CSF Production in Mice. (마우스 림프구증식과 GM-CSF생성에 미치는 Berberine의 효과)

  • Kim, Eun-Young;Rho, Min-Hee;Chung, Yang-Sook;Kim, Hyoung-Su;Kim, Kwang-Hyuk
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.694-698
    • /
    • 2007
  • Berberine, an alkaloid initially isolated from chinese herbal medicine, has antibiotic activities against a variety of organisms including bacteria, viruses, fungi, protozoans, and chlamydia. Furthermore, berberine has shown a number of beneficial effects, including anti-tumor, anti-inflammation, and vasodilatory effects. In this work we have investigated the effects of berberine on lymphocyte proliferation and GM-CSF production in mice. Mouse splenocytes were incubated with berberine and concanavalin A(Con A) to observe the effects on cell proliferation. The culture supernatants of splenocytes exposed to berberine, berberine plus LPS, and berberine plus Con A were harvested to assay GM-CSF. The cell proliferation of nice splenocytes exposed to berberine only($1{\mu}g/ml$) was increased significantly more than PBS(control) group. But the Con A-induced cell growth was inhibited by berberine. The GM-CSF production from mice splenocyte culture exposed to berberine only was increased in comparison with PBS(control) group, but the production of it with LPS or Con A was inhibited by berbeline. The present findings may explain lympocyte proliferating and regulating effects of berberine.

Microtubule Acetylation-Specific Inhibitors Induce Cell Death and Mitotic Arrest via JNK/AP-1 Activation in Triple-Negative Breast Cancer Cells

  • Suyeon Ahn;Ahreum Kwon;Youngsoo Oh;Sangmyung Rhee;Woo Keun Song
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.387-398
    • /
    • 2023
  • Microtubule acetylation has been proposed as a marker of highly heterogeneous and aggressive triple-negative breast cancer (TNBC). The novel microtubule acetylation inhibitors GM-90257 and GM-90631 (GM compounds) cause TNBC cancer cell death but the underlying mechanisms are currently unknown. In this study, we demonstrated that GM compounds function as anti-TNBC agents through activation of the JNK/AP-1 pathway. RNA-seq and biochemical analyses of GM compound-treated cells revealed that c-Jun N-terminal kinase (JNK) and members of its downstream signaling pathway are potential targets for GM compounds. Mechanistically, JNK activation by GM compounds induced an increase in c-Jun phosphorylation and c-Fos protein levels, thereby activating the activator protein-1 (AP-1) transcription factor. Notably, direct suppression of JNK with a pharmacological inhibitor alleviated Bcl2 reduction and cell death caused by GM compounds. TNBC cell death and mitotic arrest were induced by GM compounds through AP-1 activation in vitro. These results were reproduced in vivo, validating the significance of microtubule acetylation/JNK/AP-1 axis activation in the anti-cancer activity of GM compounds. Moreover, GM compounds significantly attenuated tumor growth, metastasis, and cancer-related death in mice, demonstrating strong potential as therapeutic agents for TNBC.

Comparative nutritional analysis for protopanaxadiol-enhanced genetically modified rice and its non-transgenic counterpart

  • Na Yeon Kim;Sung Dug Oh;Soo Yun Park;An Cheol Chang;Seong Kon Lee;Ye Jin Jang;So-Hyeon Baek;Yong Eui Choi;Jong-Chan Park;Doh Won Yun
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.2
    • /
    • pp.239-249
    • /
    • 2024
  • In the assessment of the biosafety of genetically modified (GM) crops, a comparative approach to identifying similarities and differences between transgenic and non-transgenic crops is helpful in identifying potential safety and nutritional issues. In this study, we aimed to compare the nutritional composition of a protopanaxadiol-enhanced genetically modified rice (PPD GM rice) with its non-transgenic counterpart. The nutritional profile of PPD GM rice was assessed against that of the parental rice cultivar 'Dongjin' to ascertain nutritional equivalence. No differences were observed between PPD GM and Non-GM rice cultivar in proximate analysis, mineral content, and amino acid composition. Although significant differences were observed in crude fat, crude protein, total dietary fiber, and some minerals between PPD GM rice and Dongjin, these variances fell within the range suggested by common cultivars (Anmi and Nipponbare) and Organization for Economic Cooperation and Development (OECD) data. Similarly, while some amino acids showed significant differences, these metabolites did not deviate from the OECD range. Principal component analysis (PCA) was conducted using the nutritional analysis data of PPD GM rice and Dongjin. The results revealed that PPD GM rice and Dongjin were grouped according to their respective cultivation years. This suggests that the variability in the nutritional composition of PPD GM rice tends to resemble that of the parental rice cultivar 'Dongjin' rather than being solely attributed to genetic modification. Overall, our findings indicate that the nutritional composition of PPD GM rice is substantially equivalent to that of its non-transgenic counterpart.

재조합 인간 GM-CSF의 정제 및 특성조사

  • 김규돈;윤세웅;이상미;권선훈;김범수;강환구;송지용
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.188-188
    • /
    • 1994
  • GM-CSF는 생체내에서 백혈구의 형성을 조절하는 인자이기 때문에 골수이식을 한 환자 및 화학요법이나 방사선 치료를 받은 암환자에게서 발생하는 백혈구의 감소현상을 완화시키는 역활을 한다. 항암 보조 치료제로서 의학적 효능을 나타낼 것으로 간주되는 인체의 GM-CSF를 유전자 재조합 기술로 효모에서 발현, 정제하여 물리화학적 특성을 밝히고 역가를 측정하고자 하였다. 효모로부터 rhGM-CSF의 발현율을 상승시키기 위해 초 분비 돌연변이 균주를 선별하였고 발효 배지 조성의 차이에 따른 발현율도 비교 측정하였다. 정제된 rhGM-CSF(LBD-005)는 여러 물리화학적 특성조사를 통해 구조나 역가면에서 상대치와 거의 일치함을 보여주었다. LBD-005는 당화된 GM-CSF와 당화되지 않은 형태의 혼합물이므로 Con-A column등을 사용하여 분리하고자 하였다. 당화된 GM-CSF와 혼합물의 물리화학적 특성을 각각 조사하였으나 유사하였고 당화에 따른 역가의 차이도 없었음을 알 수 있었다.

  • PDF

Identification of a Pathogen-Induced Glycine max Transcription Factor GmWRKY1

  • Kang, Sang-Gu;Park, Eui-Ho;Do, Kum-Sook
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.381-388
    • /
    • 2009
  • On screening pathogen-resistant soybean, we identified a WRKY type transcription factor named a Glycine max WRKY1 (GmWRKY1). Expression of GmWRKY1 gene was induced in the soybean sprout by Pseudomonas infection. The GmWRKY1 was expressed in all of the tissues with high levels in stems, leaves and developing seeds. The protein Gm WRKY1 contains highly conserved two WRKY DNA-binding domains having two $C_2-H_2$ zinc-finger motif ($C-X_{4-5}-C-X_{22-23}-H-X-H$) in its N-terminal and C-terminal amino acid sequences. In electrophoresis mobility shift assay, the GmWRKY1 protein bound specifically to W-box elements in the promoters of defense related genes. These results demonstrated that GmWRKY1 is one of the soybean WRKY family genes and the plant-specific transcription factors for defense processes.

Optimal Design of a 3 Watt GM-JT Refrigeratior at 4 K (4 K, 3 Watt급 GM-JT냉동기의 최적설계)

  • Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 1994
  • An optimal design for Gifford-McMahon/Joule-Thomson(GM-JT) refrigerators was performed by a numerical method. The design goal was to meet the cooling requirement for MRI systems, which was 3 Watt at 4 K. A general cycle analysis program was written to calculate the cooling capacity of the GM-JT refrigerators for the givenstage GM refrigerator. The program was executed for a specific refrigerator with various design parameters. The optimal values for the maximum cooling were found for the sizes of the heat exchangers, the mass flow rate of helium, and the compression pressure.

  • PDF