• Title/Summary/Keyword: GIS 다항식

Search Result 9, Processing Time 0.02 seconds

GPS Implementation for GIS Coverage Map (GPS 측량시스템을 이용한 GIS 커버리지 맵 구현)

  • 임삼성;노현호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.197-203
    • /
    • 1999
  • Depending on geographical features and error sources in the survey field, inaccurate data is inevitable in GPS kinematic survey for positioning with feature codes. In this study, the trimmed mean and the first order differential equation are used to develop an inaccurate positioning data detection algorithm, and a cubic spline curve and a linear polynomial are used to interpolate the inaccurate data. Based on interpolated data, a digital map for 30 km range of rural highway is produced and a corresponding GIS coverage map is obtained by analyzing and solving the problem associated with the map.

  • PDF

A Research on the Development of a GIS-Based Real-Time Water Monitoring Technique (GIS기반 실시간 용수 모니터링 기법 연구)

  • Kim, Seong-Hoon;Lee, Si-Hyoung;Kim, Dong-Moon;Kim, Eui-Myoung;Park, Jae-Kook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.111-118
    • /
    • 2010
  • The purposes of this study are to raise the awareness of urban water not being efficiently managed and to propose a method for resolving this issue. To serve these purposes, a methodology was proposed to obtain sensing data in a real-time monitoring method and to build them into a GIS. Some sample data among sensing data was used to perform a series of trend analyses using several polynomial models. As a result of the aforementioned research, the proposed monitoring technique is expected to offer some important information in order to improve the reliability of urban water.

A Development of Trend Analysis Models and a Process Integrating with GIS for Industrial Water Consumption Using Realtime Sensing Data (실시간 공업용수 추세패턴 모형개발 및 GIS 연계방안)

  • Kim, Seong-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.83-90
    • /
    • 2011
  • The purpose of this study is to develop a series of trend analysis models for industrial water consumption and to propose a blueprint for the integration of the developed models with GIS. For the consumption data acquisition, a real-time sensing technique was adopted. Data were transformed from the field equipments to the management server in every 5 minutes. The data acquired were substituted to a polynomial formula selected. As a result, a series of models were developed for the consumption of each day. A series of validation processes were applied to the developed models and the models were finalized. Then the finalized models were transformed to the average models representing a day's average consumption or an average daily consumption of each month. Demand pattern analyses were fulfilled through the visualization of the finally derived models. It has founded out that the demand patterns show great consistency and, therefore, it is concluded that high probability of demand forecasting for a day or for a season is available. Also proposed is the integration with GIS as an IT tool by which the developed forecasting models are utilized.

A Research on the Development of Trend Analysis Models for Residential Water consumption using realtime sensing data and on the Grafting of a GIS for Water Supply Administrative Purposes (물사용예측행정을 위한 실시간 생활용수 추세패턴 모형개발 및 GIS 연계방안에 관한 연구)

  • Kim,, Seong-Hoon;Lee, Si-Hyoung;Kim, Dong-Moon;Kim, Eui-Myoung;Park, Jae-Kook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.109-117
    • /
    • 2010
  • The ultimate purpose of this study is to propose a method to improve water supply management efficiency which is one of the two main approaches to solve the water supply-related problems. As an effort, targeting commercial water, a series of efforts was performed such as choosing a field area, selecting a sensing point, installing a sensor and server systems, and monitoring the real time data. Through the analyses of the real time data gathered, a series of water consumption trend analysis models were developed for each day and for each month. And Also proposed are the related utilization of the developed trend analysis models and a GIS. As a result of the aforementioned research, the proposed trend analysis technique is expected to offer some important role for the water supply forecasting agministation and management.

Coordinate Transformation of the Cadastral Maps with Different Surveying Origins for Utilization in GIS (GIS 활용을 위한 기타원점 좌표계 지적자료의 좌표변환에 관한 연구 - 경기도 오산시를 대상으로 -)

  • 이권한;서관호;정해철
    • Spatial Information Research
    • /
    • v.11 no.4
    • /
    • pp.481-491
    • /
    • 2003
  • This study aims at generating a continuous map by coordinates transformation between cadastral maps with different surveying origins. The continuous cadastral map is useful in various fields of GIS. For this purpose, an experimental study was conducted at Osan-Si, Kyonggi Province in cooperation with related institutions. In this study, three control point zone, large, medium, and small zone were to!;ted. For each control point, the currently used data were compared with the data at the surveyed time. About coordinate transformation method, we tested Helmert, Affine, and Polynomial methods which are the most representative among 2-dimensional coordinate transformations. These three transformation methods were evaluated according to variation of transformed parcel shape and agreement with neighboring areas. As the result of the evaluation, Affine transformation in large zone is the most appropriate coordinate transformation method fer Osan-Si.

  • PDF

The Study on the Development of Flood Prediction and Warning System at Ungaged Coastal Urban Area - On-Cheon Stream in Busan - (미계측 해안 도시 유역의 홍수예경보 시스템 구축 방법 검토 - 부산시 온천천 유역 대상 -)

  • Shin, Hyun-Suk;Park, Yong-Woon;Hong, Il-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.447-458
    • /
    • 2007
  • In this study, the coastal urban flood prediction and warning system based on HEC-RAS and SWMM were investigated to evaluate a watershed of On-Cheon stream in Busan which has characteristics of costal area cased by flooding of coastal urban areas. The basis of this study is a selection of various geological data from the numerical map that is a watershed of On-Cheon stream and computation of hydrologic GIS data. Thiessen method was used for analyzing of rainfall on the On-Cheon stream and 6th regression equation, which is Huff's Type II was time-distribution of rainfall. To evaluate the deployment of flood prediction and warning system, risk depth was used on the 3 selected areas. To find the threshold runoff for hydraulic analysis of stream, HEC-RAS was used and flood depth and threshold runoff was considered with the effect of tidal water level. To estimate urban flash flood trigger rainfall, PCSWMM 2002 was introduced for hydrologic analysis. Consequently, not only were the criteria of coastal urban flood prediction and warning system decided on the watershed of On-Cheon stream, but also the deployment flow charts of flood prediction and warning system and operation system was evaluated. This study indicates the criteria of flood prediction and warning system on the coastal areas and modeling methods with application of ArcView GIS, HEC-RAS and SWMM on the basin. For the future, flood prediction and warning system should be considered and developed to various basin cases to reduce natural flood disasters in coastal urban area.

SPOT Camera Modeling Using Ephemeris Data (궤도자료를 이용한 SPOT 카메라 모델링)

  • 김만조;차승훈;고보연
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.531-536
    • /
    • 2003
  • In this paper, a camera modeling method that utilizes ephemeris data and imaging geometry is presented. The proposed method constructs a mathematical model only with parameters that are contained in the leader file and does not require any ground control points for model construction. Control points are only needed to eliminate geolocation error of the model that is originated from errors in the parameters that are used in model construction. With few (one or two) of control points, RMS error of less than pixel size can be obtained and control points are not necessarily uniformly distributed over the entire scene. This advantage is crucial in large project and will enable to reduce project cost dramatically.

  • PDF

Comparison Among Sensor Modeling Methods in High-Resolution Satellite Imagery (고해상도 위성영상의 센서모형과 방법 비교)

  • Kim, Eui Myoung;Lee, Suk Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1025-1032
    • /
    • 2006
  • Sensor modeling of high-resolution satellites is a prerequisite procedure for mapping and GIS applications. Sensor models, describing the geometric relationship between scene and object, are divided into two main categories, which are rigorous and approximate sensor models. A rigorous model is based on the actual geometry of the image formation process, involving internal and external characteristics of the implemented sensor. However, approximate models require neither a comprehensive understanding of imaging geometry nor the internal and external characteristics of the imaging sensor, which has gathered a great interest within photogrammetric communities. This paper described a comparison between rigorous and various approximate sensor models that have been used to determine three-dimensional positions, and proposed the appropriate sensor model in terms of the satellite imagery usage. Through the case study of using IKONOS satellite scenes, rigorous and approximate sensor models have been compared and evaluated for the positional accuracy in terms of acquirable number of ground controls. Bias compensated RFM(Rational Function Model) turned out to be the best among compared approximate sensor models, both modified parallel projection and parallel-perspective model were able to be modelled with a small number of controls. Also affine transformation, one of the approximate sensor models, can be used to determine the planimetric position of high-resolution satellites and perform image registration between scenes.