• Title/Summary/Keyword: GIE

Search Result 358, Processing Time 0.03 seconds

Establishment of Miniaturized Cultivation Method for Large and Rapid Screening of High-yielding Monascus Mutants, and Enhanced Production of Monacolin-K through Statistical Optimization of Production Medium (Monascus 균사체의 소규모 배양을 통한 고생산성 균주의 대규모 선별방법 확립과 통계적 생산배지 최적화를 통한 Monacolin-K 생산성 향상)

  • Lee, Mi-Jin;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.305-312
    • /
    • 2007
  • It is crucial to develop a miniaturized cultivation method for large and rapid screening of high-yielding mutants of monacolin-K, a powerful anti-hypercholesterolemic secondary metabolite biosynthesized by the fungal cells of Monascus ruber. In order to investigate as many strains as possible in a short time, a miniaturized fermentation method especially suitable for the cultivation of the filamentous Monascus mutants was developed using $50m{\ell}$ culture-tube ($7m{\ell}$ of working volume) instead of the traditional $250m{\ell}$ flask ($50m{\ell}$ of working volume). Generally, in filamentous fungal cell fermentations, morphologies in growth and production cultures should be maintained as thick filamentous and compact-pelleted (usually less than 1 mm in diameter) forms, respectively, for enhanced production of secondary metabolites in final production cultures. In this study, we intended to induce the respective optimal morphologies in the miniaturized culture system for the purpose of rapid screening of overproducers. Miniaturized growth culture system was successfully developed due to the mass production of spores in the statistically optimized solid medium. When large amounts of spores were inoculated into the growth cultures, and brown rice flour (20 g/L) was also supplemented to the growth medium, dense filamentous morphologies were successfully induced in the growth cultures performed with the 50 ml culture tubes. It was implied that the amounts of spores inoculated into the growth tube-cultures and the growth medium components should be the key factors for the induction of the filamentous forms in the growth fermentations. Furthermore, in order to statistically optimize production medium, multiple experiments based on Plackett-Burman design and response surface method (RSM) were carried out, resulting in more than 2 fold enhanced production of monacolin-K in the final production cultures with the optimized production medium. Notably, under the production culture conditions with the statistically optimized medium, optimal pellet sizes below 1 mm in diameter were reproducibly induced, in contrast to the thick and viscous filamentous morphologies observed in the previous production cultures.

Mass Screening of Lovastatin High-yielding Mutants through Statistical Optimization of Sporulation Medium and Application of Miniaturized Fungal Cell Cultures (Lovastatin 고생산성 변이주의 신속 선별을 위해 통계적 방법을 적용한 Sporulation 배지 개발 및 Miniature 배양 방법 개발)

  • Ahn, Hyun-Jung;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.297-304
    • /
    • 2007
  • For large and rapid screening of high-yielding mutants of lovastatin produced by filamentous fungal cells of Aspergillus terreus, one of the most important stage is to test as large amounts of mutated strains as possible. For this purpose, we intended to develop a miniaturized cultivation method using $7m{\ell}$ culture tube instead of traditional $250m{\ell}$ flask (working volume $50m{\ell}$). For obtaining large amounts of conidiospores to be used as inoculums for miniaturized cultures, 4 components i.e., glucose, sucrose, yeast extract and $KH_2PO_4$ were intensively investigated, which had been observed to show positive effect on enhancement of spore production through Plackett-Burman design experimet. When optimum concentrations of these components that were determined through application of response surface method (RSM) based on central composite design (CCD) were used, maximum spore numbers amounting to $1.9\times10^{10}$ spores/plate were obtained, resulting in approximately 190 fold increase as compared to the commonly used PDA sporulation medium. Using the miniaturized cultures, intensive strain development programs were carried out for screening of lovastatin high-yielding as well as highly reproducible mutants. It was observed that, for maximum production of lovastatin, the producers should be activated through 'PaB' adaptation process during the early solid culture stage. In addition, they should be proliferated in condensed filamentous forms in miniaturized growth cultures, so that optimum amounts of highly active cells could be transferred to the production culture-tube as reproducible inoculums. Under these highly controlled fermentation conditions, compact-pelleted morphology of optimum size (less than 1 mm in diameter) was successfully induced in the miniaturized production cultures, which proved essential for maximal utilization of the producers' physiology leading to significantly enhanced production of lovastatin. As a result of continuous screening in the miniaturized cultures, lovastatin production levels of the 81% of the daughter cells derived from the high-yielding producers turned out to be in the range of 80%$\sim$120% of the lovastatin production level of the parallel flask cultures. These results demonstrate that the miniaturized cultivation method developed in this study is efficient high throughput system for large and rapid screening of highly stable and productive strains.

Optimization of Production Medium by Response Surface Method and Development of Fermentation Condition for Monascus pilosus Culture (Monascus pilosus 배양을 위한 반응표면분석법에 의한 생산배지 최적화 및 발효조건 확립)

  • Yoon, Sang-Jin;Shin, Woo-Shik;Chun, Gie-Taek;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.288-296
    • /
    • 2007
  • Monascus pilosus (KCCM 60160) in submerged culture was optimized based on culture medium and fermentation conditions. Monacolin-K (Iovastatin), one of the cholesterol lowing-agent which was produced by Monascus pilosus may maintain a healthy lipid level by inhibiting the biosynthesis of cholesterol. Plackett-Burman design and response surface method were employed to study the culture medium for the desirable monacolin-K production. As a result of experimental designs, optimized production medium components and concentrations (g/L) were determined on soluble starch 96, malt extract 44.5, beef extract 30.23, yeast extract 15, $(NH_4)_2SO_4$ 4.03, $Na_2HPO_4{\cdot}12H_2O$ 0.5, L-Histidine 3.0, $KHSO_4$ 1.0, respectively. Monacolin-K production was improved about 3 times in comparison with shake flask fermentation of the basic production medium. The effect of agitation speed (300, 350, 400 and 450 rpm) on the monacolin-K production were also observed in a batch fermenter. Maximum monacolin-K production with the basic production medium was 68 mg/L when agitation speed was 500 rpm. And it was found that all spherical pellets (average diameter of $1.0{\sim}1.5mm$) were dominant during fermentation. Based on the results, the maximum production of 185 mg/L of monacolin-K with the optimized production medium was obtained at pH (controlled) 6.5, agitation rate 400 rpm, aeration rate 1 vvm, and inoculum size 3%.

Importance of Strain Improvement and Control of Fungal cells Morphology for Enhanced Production of Protein-bound Polysaccharides(β-D-glucan) in Suspended Cultures of Phellinus linteus Mycelia (Phellinus linteus의 균사체 액상배양에서 단백다당체(β-D-glucan)의 생산성 향상을 위한 균주 개량과 배양형태 조절의 중요성)

  • Shin, Woo-Shik;Kwon, Yong Jung;Jeong, Yong-Seob;Chun, Gie-Taek
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.220-229
    • /
    • 2009
  • Strain improvement and morphology investigation in bioreactor cultures were undertaken in suspended cultures of Phellinus linteus mycelia for mass production of protein-bound polysaccharides(soluble ${\beta}$-D-glucan), a powerful immuno-stimulating agent. Phellineus sp. screened for this research was identified as Phellinus linteues through ITS rDNA sequencing method and blast search, demonstrating 99.7% similarity to other Phellinus linteus strains. Intensive strain improvement program was carried out by obtaining large amounts of protoplasts for the isolation of single cell colonies. Rapid and large screening of high-yielding producers was possible because large numbers of protoplasts ($1{\times}10^5{\sim}10^6\;protoplasts/ml$) formed using the banding filtration method with the cell wall-disrupting enzymes could be regenerated in relatively high regeneration frequency($10^{-2}{\sim}10^{-3}$) in the newly developed regeneration medium. It was demonstrated that the strains showing high performances in the protoplast regeneration and solid growth medium were able to produce 5.8~6.4%(w/w) of ${\beta}$-D-glucan and 13~15 g/L of biomass in stable manners in suspended shake-flask cultures of P. linteus mycelia. In addition, cell mass increase was observed to be the most important in order to enhance ${\beta}$-D-glucan productivity during the course of strain improvement program, since the amount of ${\beta}$-D-glucan extracted from the cell wall of P. linteus mycelia was almost constant on the unit biomass basis. Therefore we fully investigated the fungal cell morphology, generally known as one of the key factors affecting cell growth extent in the bioreactor cultures of mycelial fungal cells. It was found that, in order to obtain as high cell mass as possible in the final production bioreactor cultures, the producing cells should be proliferated in condensed filamentous forms in the growth cultures, and optimum amounts of these filamentous cells should be transferred as active inoculums to the production bioreactor. In this case, ideal morphologies consisting of compacted pellets less than 0.5mm in diameter were successfully induced in the production cultures, resulting in shorter period of lag phase, 1.5 fold higher specific cell growth rate and 3.3 fold increase in the final biomass production as compared to the parallel bioreactor cultures of different morphological forms. It was concluded that not only the high-yielding but also the good morphological characteristics led to the significantly higher biomass production and ${\beta}$-D-glucan productivity in the final production cultures.

Statistical Optimization of Production Medium for Enhanced Production of Itaconic Acid Biosynthesized by Fungal Cells of Aspergillus terreus (Aspergillus terreus에 의해 생합성되는 이타콘산의 생산성 증가를 위한 통계적 생산배지 최적화)

  • Jang, Yong-Man;Shin, Woo-Shik;Lee, Do-Hoon;Kim, Sang-Yong;Park, Chul-Hwan;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.30-40
    • /
    • 2009
  • Statistical optimization of the production medium was carried out in order to find an optimal medium composition in itaconic acid fermentation process. Itaconic acid utilized in the manufacture of various synthetic resins is a dicarboxylic acid biosynthesized by fungal cells of Aspergillus terreus in a branch of the TCA cycle via decarboxylation of cis-aconitate. Through OFAT (one factor at a time) experiments, six components (glucose, fructose, sucrose, soluble starch, soybean meal and cottonseed flour) were found to have significant effects on itaconic production among various carbon- and nitrogen-sources. Hence, using these six factors, interactive effects were investigated via fractional factorial design, showing that the initial concentrations of sucrose and cottonseed flour should be high for enhanced production of itaconic acid. Furthermore, through full factorial design (FFD) experiments, negative effects of $KH_2PO_4$ and $MgSO_4$ on itaconic acid biosynthesis were demonstrated, when excess amounts of the each component were initially added. Based on the FFD analysis, further statistical experiments were conducted along the steepest ascent path, followed by response surface method (RSM) in order to obtain optimal concentrations of the constituent nutrients. As a result, optimized concentrations of sucrose and cottonseed flour were found to be 90.4g/L and 53.8g/L respectively, with the corresponding production level of itaconic acid to be 4.36 g/L (about 7 fold higher productivity as compared to the previous production medium). From these experimental results, it was assumed that optimum ratio of the constituent carbon (sucrose) and nitrogen (cottonseed flour) sources was one of the most important factors for the enhanced production of itaconic acid.

The Study on Correlation between the Degree of Herniated Intervertebral Lumbar Disc at L4~5 Level and Improvement of Low Back Pain Treated by Korean Medicine Therapy (제 4~5번 요추 추간판 탈출 정도와 요통의 한의학적 치료 효과의 상관성 연구)

  • Yoo, Hyung-jin;Lee, Hyun-ho;Jeong, Seong-hyun;Jo, Kyeong-sang;Lee, Gie-on;Lee, Dong-hyun;Kim, Sang-min
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.26 no.2
    • /
    • pp.105-121
    • /
    • 2016
  • Objectives The purpose of this study was to compare the effects between the degree of herniated intervertebral lumbar disc (HIVD) at L4-5 level and improvement of low back pain treated by Korean Medicine therapy. Methods 567 patients who received inpatient treatment from May 2014 to December 2015 in the Daejeon-Jaseng of Korean Medicine Hospital were divided into 6 groups by the degree of HIVD at L4-5 level confirmed with a Lumbar spine magnetic resonance imaging. All patients received a combination of treatment including acupunture, chuna manual therapy, pharmacopunture, herbal medication. They were compared and analyzed on the basis of improvement between measuring Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), EuroQol-5 Dimension Index (EQ5D Index) as they were hospitalized and as they were discharged. The statistically significance was evaluated by SPSS 23.0 for windows. Results After treatment, Normal stage on Intervertebral Lumbar Disc at L4-5 level group's Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), EuroQol-5 Dimension Index (EQ5D Index) improvement was $1.30{\pm}1.62$, $4.52{\pm}11.82$ and $0.04{\pm}0.11$ respectively. Bulging group's improvement was $3.25{\pm}2.81$, $8.28{\pm}13.02$ and $0.09{\pm}0.17$ respectively. Spinal canal occupying ratio (SOR) less than 20 group's improvement was $2.15{\pm}1.92$, $11.79{\pm}17.81$ and $0.13{\pm}0.23$ respectively. SOR 20 to less than 40 stage group's improvement was $2.13{\pm}1.92$. $10.79{\pm}15.93$ and $0.10{\pm}0.26$ respectively. SOR 40 to less than 60 group's improvement was $2.16{\pm}2.24$, $9.80{\pm}16.62$ and $0.15{\pm}0.25$ respectively. Surgery group's improvement was $2.47{\pm}2.21$, $11.64{\pm}18.53$ and $0.15{\pm}0.27$ respectively (p<0.03). But there was no statistically significance between 6 group's improvement after treatment (p>0.05). Conclusions After inpatient treatment by Korean Medicine therapy, Most patient's pain, disability and Health Related Quality of Life was improved significantly. But there was no statistically correlation between the degree of HIVD at L4-5 level and improvement of low back pain. So We think that future research of higher quality and correct statistics shall be necessary.

Quality Comparison of Emulsion- Type Sausages Made from Rhus verniciflua Stokes Fed Pork and Extract (옻 급여 돈육과 추출물로 제조한 유화형 소시지의 품질 비교)

  • Lee Sung Ki;Kang Sun Moon;Kim Yong Sun;Kang Chang Gie
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.210-217
    • /
    • 2005
  • This study was designed to evaluate the quality comparison of emulsion-type sausages made from different Rhus verniciflua Stokes (RVS) sources. The pigs were fed a supplemented concentrate diet with a RVS supplement of $4\%$ feed for 5 weeks before slaughter. The RVS extract was prepared from 100g of RVS sawdust and 1L of distilled water for 48 hours. Emulsion-type sausages were made using lean meat or dietary RVS han1 lean $(51.07\%)$, ice water or RVS extract $(19.63\%)$, back fat $(26.60\%)$ and other additives $(2.70\%)$. The treated sausages were divided into non-dietary meat with water (T1, Control), dietary RVS meat with water (T2), non-dietary meat with RVS extract (T3), and dietary meat with RVS extract (T4). The crude fat was significantly lower (p<0.05) in dietary RVS meat-added sausages (T2, T4) than in control sausage (T1). The lightness ($L^{\ast}$) and redness ($a^{\ast}$) were significantly lower (p<0.05) in RVS extract-added sausages (T3, T4) during refrigerated storage. The $a^{\ast}$ value was higher (p<0.05) in T2 than in the other treatments. The VBN and TBARS values were significantly lower in RVS extract-added sausages (T3, T4) during refrigerated storage. The hardness, adhesiveness, gumminess, and chewiness were significantly lower (p<0.05) in T2 than in the other treatments. This results showed that feeding of RVS in diet and/or RVS extract had a significant impact on the quality of emulsion-type sausage. The RVS extract-added emulsion-type sausages (T3, T4) showed dark and reddish color although they were more effective in delaying the protein deterioration and lipid oxidation. Consequently, the sausage prepared from pigs fed $4\%$ RVS with water (T2) was more effective in increasing the $a^{\ast}$ value, textural properties, and delaying the protein deterioration, lipid oxidation than that without RVS in diet.

Development of Avermectin $B_{1a}$ High-yielding Mutants through Rational Screening Srategy based on Understanding of Biosynthetic Pathway (생합성 경로의 이해를 통한 Avermectin $B_{1a}$ 고생산성 변이주 개발)

  • Song Sung Ki;Jeong Yong Seob;Chun Gie-Taek
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.376-382
    • /
    • 2005
  • Avermectin (AVM) $B_{1a}$ produced by Streptomyces avermitilis via polyketide pathway is a secondary metabolite with powerful anthelmintic and insecticidal activities, thus being used as an efficient agent in the field of agriculture and animal health. It has been reported that a precursor for AVM $B_{1a}$ biosynthesis was isoleucine and the biosynthetic pathway of AVM $B_{1a}$ was closely similar to that of fatty acid. Based on understanding of the biosynthetic pathway of AVM $B_{1a}$, we intended to screen various mutants resistant against O-methyl threonine (OMT), an isoleucine-anti metabolite, and/or mutants resistant against p-fluoro phenoxy acetic acid (pFAC), an inhibitor of fatty acid biosynthesis. It was inferred that these mutants could produce AVM $B_{1a}$ more efficiently, due to the acquired capability of not only overproducing isoleucine intracellularly but also channelling metabolized carbon-sources into the polyketide pathway, thus leading to enhanced biosynthesis of AVM $B_{1a}$. The resulting mutant (PFA-1 strain) resistant against 100 ppm of pFAC was able to produce approximately 42 fold higher amount of AVM $B_{1a}$ compared to the parallel mother strain (4,200 vs. 100 units/l). In addition, through the process of continuous strain improvement program carried out by gradually increasing the OMT concentration, it was possible to obtain a more attractive mutant with greater AVM $B_{1a}$ production capacity (9,000 units/l). Notable was that significantly higher producer (12,000 units/l) could be selected through further screening of the resistant mutants, this time, to even higher concentration of PFAC. Meanwhile, through the analysis of AVM Bla production histograms (i.e., number of strains according to their AVM $B_{1a}$ biosynthetic ability) for the earlier strains in comparison with the high producers having the characteristics of resistance to OMT and pFAC, it was found that production stability of the high-yielding producers were remarkably improved, as demonstrated by the fact that larger proportion of the mutated strains had greater capability of AVM $B_{1a}$ biosynthesis ($71\%$ in the range between 5,000 and 7,000 units/L; $47\%$ in the range between 6,000 and 7,000 units/l). Based on these consequences, it was concluded that the rational screening strategy based on the understanding of the biosynthetic pathway of AVM $B_{1a}$ was very effective in obtaining high-yielding mutants with the features of enhanced production stability.

Antioxidant and anti-inflammatory activities of extracts from Ledum palustre L. (백산차 추출물의 항산화 및 항염증 활성)

  • Kim, Se Gie
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.1025-1033
    • /
    • 2017
  • In this study, Ledum palustre L. was extracted by 4 different methods (LPW, hot water extraction; LPA, autoclave extraction; LPU, ultrasonification extraction; LPE, 70% ethanol extraction) and LPE was fractionated by using polarity difference of each solvent and used as 4 samples (LPE/H, the n-hexane layer; LPE/E, the EtOAc layer; LPE/B, the n-BuOH layer; LPE/W, the $H_2O$ layer). Antioxidant activities of Ledum palustre L. extracts were measured by DPPH and ABTS. As a result, the DPPH and ABTS radical scavenging showed high activities with LPE (82.3%, 99.8%) and LPE/E (91.8%, 99.6%) at the concentration of $1,000{\mu}g/mL$. The anti-inflammatory activities of LPE and LPE/E were measured by the inhibitory activity against NO, $PGE_2$, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 production on LPS-stimulated Raw 264.7 macrophages. As a result of MTT assay, cell viabilities of LPE and LPE/E were more than 90% at $25{\mu}g/mL$. NO and $PGE_2$ productions were inhibited by LPE (NO: 50%, $PGE_2$: 70%) and LPE/E (NO: 57%, $PGE_2$: 73%) at the concentration of $25{\mu}g/mL$. The inhibition activities against TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production were 24%, 47% and 40% at the concentration of $25{\mu}g/mL$ of LPE. In particular, LPE/E showed 51%, 57% and 62% inhibition activities at the same concentration, respectively. From the above results, it can be concluded that $1,000{\mu}g/mL$ of LPE and LPE/E have the high antioxidant activities similar with Vitamin C, and $25{\mu}g/mL$, the low concetration of LPE and LPE/E have excellent anti-inflammatory activities. Therefore, if more research about anti-aging, whitening and antimicrobial activity of Ledum palustre L. extracts is carried out in the future, it will be possible to use them as effective materials for the prevention and treatment of inflammatory diseases and in the areas of functional foods and cosmetics.

Enhanced production of monacolin-K through supplement of monacolin-K precursors into production medium and cloning of SAM synthetase gene (metK) (Precursor제공 및 생합성 관련 유전자의 cloning을 통한 Monacolin-K 생산성 향상)

  • Lee, Mi-Jin;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.519-524
    • /
    • 2008
  • Monacolin-K is a strong anti-hypercholesterolemic agent produced by Monascus sp. via polyketide pathway. High-yielding mutants of monacolin-K were developed through rational screening strategies adopted based on understanding of monacolin-K biosynthetic pathway. Through the experiments for investigating various amino acids as putative precursors for the monacolin-K biosynthesis, it was found that production level of monacolin-K was remarkably increased when optimum amount of cysteine was supplemented into the production medium. We suggested that these phenomena might be related to the special roles of SAM (S-adenosyl methionine), a putative methyl group donor in the biosynthetic pathway of monacolin-K, demonstrating close interrelationship between SAM-synthesizing primary metabolism and monacolin-K synthesizing secondary metabolism. Namely, increase in the intracellular amount of SAM derived from the putative precursor, cysteine which was extracellularly supplemented into the production medium might contribute to the significant enhancement in the monacolin-K biosynthetic capability of the highly mutated producers. On the basis of these assumptions derived from the above fermentation results, we decided to construct efficient expression vectors harboring SAM synthetase gene (metK) cloned from A. nidulans, with the hope that increased intracellular level of SAM could lead to further enhancement in the monacolin-K production through overcoming a rate-limiting step associated with monacolin-K biosynthesis. Hence, in order to overcome the plausible rate-limiting step associated with monacolin-K biosynthesis by increasing intracellular level of SAM, we transformed the producer mutants with an efficient expression vector harboring gpdA promoter of the producer microorganism, and metK gene. Notably, from the resulting various transformants, we were able to screen a very high-yielding transformant which showed approximately 3.3 fold higher monacolin-K productivity than the parallel nontransformed mutants in shake flask cultures performed under the identical fermentation conditions.