• Title/Summary/Keyword: GFRP-RC

Search Result 84, Processing Time 0.019 seconds

Retrofit of Rectangular RC Columns using GFRP (GFRP를 이용한 각형 RC 교각의 보강)

  • Lee, Young-Ho;Youm, Kwang-Soo;Jeong, Jin-Woo;Kwon, Tae-Gyu;Park, Ki-Tae;Hwang, Yoon-Koog
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.246-249
    • /
    • 2006
  • This paper presents experimental studies on investigating the seismic retrofit performance of reinforced concrete rectangular columns with poor lap-splice details using GFRP wrapping. Six columns have been tested. The GFRP retrofitted columns with same 7.5 mm thickness have two section shapes, i.e., rectangular and elliptical sections. The GFRP height was changed from 450 mm to 900 mm. The performance of GFRP retrofitted columns which have different shapes and height are verified.

  • PDF

Shear Strength of RC Beams Strengthened with GFRP Sheets with Different Details (유리섬유쉬트로 전단보강된 RC보의 전단강도에 대한 보강매수 및 형태의 영향)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.251-254
    • /
    • 2005
  • A number of studies have been conducted on FRP shear strengthening of RC beams during the past decade. The test results indicated. that the strengthened specimens failed predominantly by debonding of the FRP sheets before reaching the rupture strength of FRP sheets. For this reason, limits on the effective strain in FRP have been incorporated in ACI 440.2R recommendation considering debonding failure. This paper presents the test results of 7 small scale RC beams shear-strengthened with glass fiber sheets. Three types of FRP configurations, such as two sides bonded, U wrap and fiber shear-key embedded, were considered. GFRP sheet were bonded vertically to member axis along the shear span. From the test results, it was found that debonding strain of GFRP sheets at failure decreased with the number of layers. In addition, effective strain of FRP proposed by ACI 440.2R recommendation has been verified in this study.

  • PDF

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders

  • Mazloom, Moosa;Mehrvand, Morteza;Pourhaji, Pardis;Savaripour, Azim
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.47-66
    • /
    • 2019
  • One method of retrofitting concrete structures is to use fiber reinforced polymers (FRP). In this research, the shear, torsional and flexural strengthening of self-compacting reinforced concrete (RC) girders are fulfilled with glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) materials. At first, for verification, the experimental results were compared with numerical modeling results obtained from ABAQUS software version 6.10. Then the reinforcing sheets were attached to concrete girders in one and two layers. Studying numerical results obtained from ABAQUS software showed that the girders stiffness decreased with the propagations of cracks in them, and then the extra stresses were tolerated by adhesive layers and GFRP and CFRP sheets, which resulted in increasing the bearing capacity of the studied girders. In fact, shear, torsion and bending strengths of the girders increased by reinforcing girders with adding GFRP and CFRP sheets. The samples including two layers of CFRP had the maximum efficiencies that were 90, 76 and 60 percent of improvement in shear, torsion and bending strengths, respectively. It is worth noting that the bearing capacity of concrete girders with adding one layer of CFRP was slightly higher than the ones having two layers of GFRP in all circumstances; therefore, despite the lower initial cost of GFRP, using CFRP can be more economical in some conditions.

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members (RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안)

  • Choi, Dong-Uk;Chun, Sung-Chul;Ha, Sang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets (유리섬유시트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.677-684
    • /
    • 2007
  • This study investigates the failure mechanism of RC beams strengthened with GFRP (glass fiber reinforced polymer) sheets. After analyzing failure mechanisms, the various methods to prevent the debonding failures, such as increasing bonded length of GFRP sheets, U-shape wrappings and epoxy shear keys are examined. The bonded length of GFRP sheets are calculated based on the assumed bond strengths of epoxy resin. The U-shape wrappings are either adopted at the end or center of the CFRP sheets bonded to the beam soft. The epoxy shear keys are embedded to the beam soft to provide sufficient bond strength. The end U-wrappings and the center U-wrappings are conventional, while epoxy shear keys are new details developed in this study. A total six half-scale RC beams have been constructed and tested to investigate the effectiveness of each methods to prevent debonding failure of GFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings do not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear keys reached an ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal GFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In the case of shear keys, it was sufficient to prevent debonding and the beam was failed by GFRP sheets rupture.

Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study

  • Chergui, Selma;Daouadji, Tahar Hassaine;Hamrat, Mostefa;Boulekbache, Bensaid;Bougara, Abdelkader;Abbes, Boussad;Amziane, Sofiane
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.197-217
    • /
    • 2019
  • In this study, the interfacial stresses in RC beams strengthened by externally bonded prestressed GFRP laminate are evaluated using an analytical approach, based on the equilibrium equations and boundary conditions. A comparison of the interfacial stresses obtained from the present analytical model and other existing models is undertaken. Otherwise, a parametric study is conducted to investigate the effects of geometrical and material properties on the variation of interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate. The results obtained indicate that the damage degree has little effect on the maximum shear stress, with a variation less than 5% between the damaged and undamaged RC beams. However, the results also reveal that the prestressing level has a significant effect on the interfacial stresses; hence the damaged RC beam strengthened with an initial prestressing force of 100 kN gives 110% higher maximum shear stress than the damaged RC beam strengthened with an initial prestressing force of 50 kN. The values of shear stress obtained by the analytical approach are approximately equal to 44% of those obtained from the numerical solution, while the interfacial normal stresses predicted by the numerical study are approximately 26% higher than those calculated by the analytical solution.

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

Analysis of behavior of bare and in-filled RC frames subjected to quasi static loading

  • Sandhu, Balvir;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.381-395
    • /
    • 2020
  • Study on the inelastic response of bare and masonry infilled Reinforced Concrete (RC) frames repaired using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi- static loading is presented in the work. The hysteresis behaviour, stiffness retention, energy dissipation and damage index are the parameters employed to analyze the efficacy of FRP strengthening of bare and brick in-filled RC frames. It is observed that there is a significant improvement in load carrying capacity of brick infilled frame over bare RC frame. Also FRP strengthened brick infilled frame performs much better than FRP repaired bare frame under quasi static loading. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.

A Prediction of the Long-Term Deflection of RC Beams Externally Bonded with CFRP and GFRP (CFRP와 GFRP로 외부 부착된 철근콘크리트보의 장기 처짐 예측)

  • Kim, Sung-Hu;Kim, Kwang-Soo;Han, Kyoung-Bong;Song, Seul-Ki;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.765-772
    • /
    • 2008
  • For RC structures, long-term deformation occurs due to the inherent characteristics, which are creep and shrinkage. In terms of serviceability, it is important to limit deflection caused by the deformation to the allowable deflection. In the recent years, various repair and strengthening methods have been used to improve performance of the existing RC structures. One of the typical methods is FRP externally bonded method (EBR). Fiber reinforced polymer (FRP) has been used worldwide as repair and strengthening materials due to its superior properties. Besides, it has to offer improved strengthening performance not only under instantaneous load but sustained load. Therefore, accurate prediction method of deflection for the RC members externally bonded with FRP under sustained load is required. In this paper, three beams were fabricated. Two beams were externally strengthened with one of CFRP plate and GFRP plate respectively. Total three beams were superimposed under sustained load of 25 kN. During 470 days, deflections at midspan were obtained. Moreover, creep coefficients and shrinkage strains were calculated by using ACI-209 code and CEB-FIP code. In order to predict the deflection of the beams, EMM, AEMM, Branson's method and Mayer's method were used. Through the experiment, it was found that the specimen with CFRP plate has the most flexural capacity and Mayer's method is the most precise method to predict total long-term deflections.