DOI QR코드

DOI QR Code

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim (Department of Civil Engineering, NED University of Engineering and Technology) ;
  • Abdul Jabbar Sangi (Department of Civil Engineering, NED University of Engineering and Technology) ;
  • Shuaib H. Ahmad (Department of Civil Engineering, NED University of Engineering and Technology)
  • Received : 2022.08.03
  • Accepted : 2023.01.19
  • Published : 2023.06.25

Abstract

Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

Keywords

Acknowledgement

The authors would like to express gratitude to civil engineering department of NED University of Engineering and Technology for their assistance.

References

  1. Abed, F., Oucif, C., Awera, Y., Mhanna, H.H. and Alkhraisha, H. (2021), "FE modeling of concrete beams and columns reinforced with FRP composites", Def. Technol., 17(1), 1-14. https://doi.org/https://doi.org/10.1016/j.dt.2020.02.015. 
  2. ACI Committee 440 (2007), Report on Fiber Reinforced Polymer (FRP) Reinforcement for Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA. 
  3. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2014), "Axial capacity of circular concrete columns reinforced with GFRP bars and spirals", J. Compos. Constr., 18(1), 4013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438. 
  4. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2015), "Theoretical stress--strain model for circular concrete columns confined by GFRP spirals and hoops", Eng. Struct., 102, 202-213. https://doi.org/10.1016/j.engstruct.2015.08.020. 
  5. Ahmad, S. (2003), "Reinforcement corrosion in concrete structures, its monitoring and service life prediction - A review", Cement Concrete Compos. 25(4-5), 459-471. https://doi.org/10.1016/S0958-9465(02)00086-0. 
  6. Ahmed, A., Guo, S., Zhang, Z., Shi, C. and Zhu, D. (2020), "A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete", Constr. Build. Mater., 256, 119484. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119484. 
  7. ASTM D7205/D7205M-11 (2011), Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars (ASTM D7205/D7205M-11), American Society for Testing and Materials, West Conshohocken, PA, USA. 
  8. Awera, Y. and Abed, F. (2020), "Axial capacity of circular concrete columns reinforced with GFRP bars and spirals using FEA", 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai UAE, February-April. 
  9. Bank, L.C. (1993), "Properties of FRP reinforcements for concrete", Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures, Elsevier Science, Amsterdam, The Netherlands. 
  10. Brown, V.L. and Bartholomew, C.L. (1993), "FRP reinforcing bars in reinforced concrete members", Mater. J., 90(1), 34-39. https://doi.org/10.14359/4034. 
  11. Cervenka, J. and Papanikolaou, V.K. (2008), "Three dimensional combined fracture--plastic material model for concrete", Int. J. Plast., 24(12), 2192-2220.  https://doi.org/10.1016/j.ijplas.2008.01.004
  12. De Lorenzis, L. and Nanni, A. (2002), "An introduction to FRP composites for construction", ACI Struct. J., 99(2), 123-132. https://doi.org/10.14359/11534. 
  13. De Luca, A., Matta, F. and Nanni, A. (2010), "Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load", ACI Struct. J., 107(5), 589-596. https://doi.org/10.14359/51663912. 
  14. El-Gamal, S. and AlShareedah, O. (2020), "Behavior of axially loaded low strength concrete columns reinforced with GFRP bars and spirals", Eng. Struct., 216, 110732. https://doi.org/10.1016/j.engstruct.2020.110732. 
  15. Elchalakani, D.M., Karrech, A., Dong, M., Ali, M. and Yang, B. (2018), "Experiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loading", Struct., 14, 273-289. https://doi.org/10.1016/j.istruc.2018.04.001. 
  16. Elchalakani, M., Dong, M., Karrech, A., Mohamed Ali, M.S. and Huo, J.S. (2020), "Circular concrete columns and beams reinforced with GFRP bars and spirals under axial, eccentric, and flexural loading", J. Compos. Constr., 24(3), 4020008. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001008. 
  17. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2017), "Failure envelope of circular concrete columns reinforced with glass fiber-reinforced polymer bars and spirals", ACI Struct. J., 114(6), 1417-1428. https://doi.org/10.14359/51689498. 
  18. Hadi, M.N.S., Karim, H. and Sheikh, M.N. (2016), "Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions", J. Compos. Constr., 20(4), 4016009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000670. 
  19. Hollaway, L.C. (2010), "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater., 24(12), 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062. 
  20. Ifrahim, M.S., Sangi, A.J. and Hamza, S.M. (2022), "Experimental study on bond strength of locally manufactured GFRP bar", Eng. Proc., 22(1), 4. https://doi.org/10.3390/engproc2022022004. 
  21. Karim, H. (2016), Behaviour of Circular Concrete Columns Reinforced with GFRP Bars and GFRP Helices, Ph.D. Dissertation, University of Wollongong, Wollongong, Australia. 
  22. Karim, H., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and helices", Constr. Build. Mater., 112, 1147-1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219. 
  23. Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 4014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590. 
  24. Nanni, A. (1999), Composites: Coming on Strong, 44(1), 120-124. https://doi.org/10.1007/BF03653984
  25. Nanni, A., De Luca, A. and Jawaheri Zadeh, H. (2014), Reinforced Concrete with FRP Bars Mechanics and Design, CRC Press, Boca Raton, FL, USA. 
  26. Pessiki, S. and Pieroni, A. (1997), "Axial load behavior of largescale spirally reinforced highstrength concrete columns", Struct. J., 94(3), 304-314. https://doi.org/10.14359/482. 
  27. Raza, A. and Ahmad, A. (2021), "Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings", Eng. Struct., 227, 111461. https://doi.org/10.1016/j.engstruct.2020.111461. 
  28. Teng, J.G., Xiao, Q.G., Yu, T. and Lam, L. (2015), "Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement", Eng. Struct., 97, 15-28. https://doi.org/10.1016/j.engstruct.2015.03.030. 
  29. Ye, Y.Y., Zhuge, Y., Smith, S.T., Zeng, J.J. and Bai, Y.L. (2022), "Behavior of GFRP-RC columns under axial compression: Assessment of existing models and a new axial load-strain model", J. Build. Eng., 47, 103782. https://doi.org/https://doi.org/10.1016/j.jobe.2021.103782. 
  30. Zeng, J.J., Chen, S.P., Zhuge, Y., Gao, W.Y., Duan, Z.J. and Guo, Y.C. (2021), "Three-dimensional finite element modeling and theoretical analysis of concrete confined with FRP rings", Eng. Struct., 234, 111966. https://doi.org/https://doi.org/10.1016/j.engstruct.2021.111966. 
  31. Zeng, J.J., Liao, J., Zhuge, Y., Guo, Y.C., Zhou, J.K., Huang, Z.H. and Zhang, L. (2022), "Bond behavior between GFRP bars and seawater sea-sand fiber-reinforced ultra-high strength concrete", Eng. Struct., 254, 113787. https://doi.org/https://doi.org/10.1016/j.engstruct.2021.113787. 
  32. Zkal, F.M., Polat, M. and Yagan, M. (2018), "Mechanical properties and bond strength degradation of GFRP and steel rebars at elevated temperatures", JCBM Constr. Build. Mater., 184, 45-57. https://doi.org/10.1016/j.conbuildmat.2018.06.203.