• Title/Summary/Keyword: GFRP 보강근 콘크리트부재

Search Result 16, Processing Time 0.023 seconds

Technical Trend of Concrete Member with GFRP Bar and Tension Stiffening Effect (GFRP 보강근 배근 콘크리트 기술동향 및 인장강화 효과 분석)

  • Won-Jun Lee;Seong-Cheol Lee;Jung-Woo Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.5
    • /
    • pp.433-448
    • /
    • 2024
  • Steel rebar is commonly used as reinforcement in reinforced concrete (RC) structures. However, steel rebar corrodes over time, leading to a significant reduction in structural safety as the structure ages. Therefore, Glass Fiber Reinforced Plastic (GFRP) rebar, which is not prone to corrosion, has gained attention as a replacement for conventional steel reinforcement. This study investigates the fundamental technology required for applying GFRP rebar to concrete members. Based on this, the bond behavior and tension stiffening effect of GFRP-reinforced members were analyzed. The analysis revealed that key properties of GFRP rebar, such as bond behavior, rebar diameter, and reinforcement ratio, are major factors influencing the tension stiffening effect. To further expand the application of GFRP rebar,it is expected that a new model that accurately reflects the tension stiffening effect will be required.

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member (인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyung-Yeol;Choi, Jin-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2013
  • Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

Behavior of GFRP reinforced decks with various reinforcement ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 거동 실험)

  • You, Young-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Hyeong-Yeol;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.49-52
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebar. A total of three real size bridge deck specimens were made and tested. Main variable was reinforcement ratio of GFRP rebar. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior.

  • PDF

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars (GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구)

  • Yu, Young Jun;Park, Young Hwan;Park, Ji Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.719-727
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members (RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안)

  • Choi, Dong-Uk;Chun, Sung-Chul;Ha, Sang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

Reliability Assessment of Concrete Beams Reinforced with GFRP Bars (FRP 보강근을 사용한 콘크리트 보의 신뢰성 해석)

  • Nam, Ho-Yun;Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.185-188
    • /
    • 2008
  • Fiber reinforced polymer(FRP) bars are proving to be a valuable solution in the corrosion problem of steel reinforced concrete structures. As such, a number of guidelines for their use have been developed. These guidelines are primarily based on modifications to existing codes of practice for steel reinforced concrete structures. These guidelines are also similar in that though the design equations are presented in the partial factor formats that are often used in probability based design, they are not true probabilistic codes. Instead, they typically make use of already existing design factors for loads and resistances. Thus, when concrete structures reinforced FRP bars are designed, the structural reliability levels are not known. This paper investigates uncertainties of concrete beams reinforced with GFRP bars. Also, the structural reliability levels are evaluated for the flexural failure mode.

  • PDF

Flexural Behavior of FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber (이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 거동)

  • Yang, Jun-Mo;Shin, Hyun-Oh;Min, Kyung-Hwan;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2011
  • Ten high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers were constructed and tested. Six beams were reinforced with two layers of steel, CFRP, and GFRP bar combinations. The other four beams were reinforced with two layers of single type CFRP and GFRP bars, with steel and synthetic short fibers. An investigation was performed on the influence of the parameters on the load-carrying capacity, post cracking stiffness, cracking pattern, deflection behavior, and ductility. The low post cracking stiffness, large deflection, deep crack propagation, large crack width, and low ductility of FRP bar-reinforced beams were controlled and improved by positioning steel bars in the inner layer of the FRP bar layer. In addition, the addition of fibers increased the first-cracking load, ultimate flexural strength, and ductility as well as the deep propagating cracks were controlled in the FRP bar-reinforced concrete beams. The increased ultimate concrete strain of fiber-reinforced concrete should be determined and considered when FRP bar-reinforced concrete members with fibers are designed.

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member (축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.

An Experimental Study on the Long-Term Deflection of Concrete Beams with GFRP Rebars (FRP 보강 콘크리트 보의 장기처짐에 관한 실험연구)

  • Park, Ji-Sum;You, Young-Jun;Park, Young-Hwan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.325-328
    • /
    • 2008
  • This study is to investigate experimentally the long-term deflection of concrete beams with glass fiber reinforced polymer (GFRP) reinforcing bars subjected to the sustained flexural load for periods of up to 6 months. A total of four beams were tested. All beams were designed with net span of 2,700 mm and rectangular cross-section of 200 mm width and 300 mm depth. From the test results the time-dependent deflection of concrete beams with GFRP bars was about 40 to 70% of the initial deflection. As well as this paper compares the long-term deflection calculated by 440.1R-06 design guide and that of tested beams. The comparison indicated that the calculated long-term deflection overestimate the observed long-term deflection of concrete beams with FRP rebars.

  • PDF