• Title/Summary/Keyword: GFP gene

Search Result 302, Processing Time 0.023 seconds

Expression of GFP Gene in Porcine Embryos after ICSI with Different DNA Binding Methods

  • Han, J. H.;Kim, S.W.;Lee, Y.K.;Lee, P.Y.;Park, C.G.;Lee, S.E.;Baek, K.N.;Lee, H.G.;Lee, J.Y.;Chang, W.K.;Park, J.K.
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.191-191
    • /
    • 2004
  • Transgenic animals are produced primarily by microinjecting exogenous DNA into the male pronuclei of a zygote. Microinjection method for gene transmitting is successful in mice but not efficient in farm animals, limiting it's general utility such as a large scale facility and labour. Based on our finding that sperm cells bind with exogenous DNA, sperm was used as a vector for producing transgenic animals to introduced green fluorescence protein(GFP) gene. (omitted)

  • PDF

Differential expression of soybean SLTI100 gene encoding translation elongation factor 1A by abiotic stresses

  • Chung, Eun-Sook;Cho, Chang-Woo;So, Hyun-A;Yun, Bo-Hyun;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.255-260
    • /
    • 2009
  • The translation elongation factor 1A, eEF1A, catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome by a GTP-dependent mechanism. By subtractive suppression hybridization technique, we have isolated a soybean low-temperature inducible gene, SLTI100 encoding translation elongation factor 1A. Multiple sequence alignments and phylogenic analysis showed that SLTI100 and other eEF1As originated from diverse organisms are highly conserved. RNA expression of SLTI100 was specifically induced by low temperature, high salt, ABA, or drought stress. Based on the subcellular localization of the corresponding gene product fused to GFP, we were able to confirm that SLTI100-GFP was restricted to the nucleus and cytoplasm. We propose that soybean eEF1A may play an important role in translational regulation during abiotic stress responses in plants.

Effects of long double-stranded RNAs on the resistance of rock bream Oplegnathus fasciatus fingerling against rock bream iridovirus (RBIV) challenge

  • Kosuke, Zenke;Kim, Ki-Hong
    • Journal of fish pathology
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2010
  • To determine whether rock bream Oplegnathus fasciatus can be protected from rock bream iridovirus (RBIV) infection by intramuscular injection of long double-stranded RNAs (dsRNAs), we compared protective effect of virus-specific dsRNAs corresponding to major capsid protein (MCP), ORF 084, ORF 086 genes, and virus non-specific green fluorescent protein (GFP) gene. Furthermore, to determine whether the non-specific type I interferon (IFN) response was associated with protective effect, we estimated the activation of type I IFN response in fish using expression level of IFN inducible Mx gene as a marker. As a result, mortality of fish injected with dsRNAs and challenged with RBIV was delayed for a few days when comparing with PBS injected control group. However, virus-specific dsRNA injected groups exhibited no significant differences in survival period when compared to the GFP dsRNA injected group. Semi-quantitative analysis indicated that the degree of antiviral response via type I IFN response is supposedly equal among dsRNA injected fish. These results suggest that type I IFN response rather than sequence-specific RNA interference might involve in the lengthened survival period of fish injected with virus-specific dsRNAs.

Marine birnavirus (MABV)'s 5' terminal region of segment A acts as internal ribosome entry site (IRES)

  • Kim, So Yeon;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.34 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • Eukaryotic translation is initiated by either cap-dependent or cap-independent way, and the cap-independent translation can be initiated by the internal ribosomal entry site (IRES). In this study, to know whether the 5'UTR leader sequence of marine birnavirus (MABV) segment A and segment B can act as IRES, bicistronic vectors harboring a CMV promoter-driven red fluorescent gene (mCherry) and poliovirus IRES- or MABV's leader sequence-driven green fluorescent gene (eGFP) were constructed, then, transfected into a mammalian cell line (BHK-21 cells) and a fish cell line (CHSE-214 cells). The results showed that the poliovirus IRES worked well in BHK-21 cells, but did not work in CHSE-214 cells. In the evaluation of MABV's leader sequences, the reporter eGFP gene under the 5'UTR leader sequence of MABV's segment A was well-translated in CHSE-214 cells, indicating 5'UTR of MABV's segment A initiates translation in the cap-independent way and can be used as a fish-specific IRES system. However, the 5'UTR leader sequence of MABV's segment B did not initiate translation in CHSE-214 cells. As the precise mechanism of birnavirid IRES-mediated translation is not known, more elaborate investigations are needed to uncover why the leader sequence of segment B could not initiate translation in the present study. In addition, further studies on the host species range of MABV's segment A IRES and on the screening of other fish-specific IRESs are needed.

Gene Transfer into Chicken Embryos using Defective Retroviral Vectors Packaged with Vesicular Stomatitis Virus G Glycoprotein Envelopes (Vesicular Stomatitis Virus G Glycoprotein Envelope으로 포장된 Defective Retroviral Vector를 이용한 닭의 배로의 유전자 전이)

  • 권모선;임은정;허영태;이훈택;이영만;김태완
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.2
    • /
    • pp.171-180
    • /
    • 2001
  • Compared to other gene transfer system, the advantages of retrovirus-mediated gene transfer are technical ease, efficient expression and genetic stability. Despite the high potency of the retrovirus vector system in gene transfer, one of the drawbacks is a difficulty in concentration of virus stock. To overcome this problem, we tested a new retrovirus vector system producing the progeny retrovirus particles encapsidated with VSV-G (vesicular stomatitis virus G glycoprotein). The infectivity of this virus was not sacrificed by ultracentrifugal concentration and the host cell range extended from all mammalian to fish embryos. Virus titer after 1,000 x concentration was more than 10$^{8}$ CFU/ $m\ell$ on most of the target cell lines. We applied this pantropic viruses in transgenic chicken production by injecting the concentrated (100$\times$) stock into subgerminal cavity of stage X chicken embryos. The survival rate of chicken embryos after injection was about 20% and gene integration rate in surviving embryos was scored almost 100%. Analyses of RT-PCR and fluorescence microscopy, however, showed no evidence of the transgene expression.

  • PDF

Combination of Epstein-Barr Virus-Based Plasmid and Nonviral Polymeric Vectors for Enhanced and Prolonged Gene Expression

  • Choi, Hye;Park, Key Sun;Bae, Seon Joo;Song, Su Jeong;Kim, Kyoon Eon;Park, Jong-Sang;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3676-3680
    • /
    • 2012
  • An Epstein-Barr virus (EBV)-based plasmid contains the EBV nuclear antigen 1 (EBNA1) gene and EBV replication origin (oriP) sequence. Since EBNA1 (the only EBV-encoded protein) is combined with oriP, it is replicated simultaneously with chromosomal DNA in human, primate, and canine cells and is faithfully segregated at a stable copy number upon cell division. Consequently, it can be used to stably express gene inserts over a prolonged time in target cells. We have previously shown that the polyamidoamine (PAMAM) dendrimer can be surface-modified with L-arginine. Arginine is present at a high frequency in the transactivator of transcription (Tat) sequences of human immunodeficiency virus (HIV). It presents high membrane permeability and permits effective transfer of DNA inside the cells. In this study, we constructed two kinds of recombinant DNA by inserting the luciferase gene and enhanced green fluorescence protein (eGFP) gene as reporter genes into the pCEP4 plasmid vector. We measured dynamic light scattering (DLS) and zeta potential after preparing PAMAM-based cationic polymer/EBV-based plasmid complexes. We performed transfection of HEK 293 cell lines with the polyplexes, and monitored luciferase activity and green fluorescence protein (GFP) expression. Our results show that PAMAM-based cationic polymer/EBV plasmid complexes provide enhanced and sustained gene expression.

Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere

  • Kong, Hyun Gi;Kim, Nam Hee;Lee, Seung Yeup;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.136-144
    • /
    • 2016
  • Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.

Transformation of Bottle Gourd Rootstock (Lagenaria siceraria Standl.) using GFP gene (GFP유전자를 이용한 대목용 박 형질전환)

  • Lim, Mi-Young;Park, Sang-Mi;Kwon, Jung-Hee;Han, Sang-Lyul;Shin, Yoon-Sup;Han, Jeung-Sul;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.33-37
    • /
    • 2006
  • Bottle gourd (Lagenaria siceraria Standl.) has been used as a rootstock for the watermelon cultivation because of better growth ability at low temperature and avoidance from contamination of the soil disease. Since the genetic source for the elite rootstock is limited in nature, the genetic engineering method is inevitable to develop new lines especially to obtain the functionally important or multi-disease resistant bottle gourd. Recently, our lab has set up a successful system to transform the bottle gourd. in order to monitor the transformation process, GFP gene is used. Cotyledons of the inbred line 9005, 9006 and G5 were used to induce the shoot under the selection media with MS + 30 g/L sucrose + 3.0 mg/L BAP + 100 mg/L kanamycin + 500 mg/L cefotaxime + 0.5 mg/L $AgNO_3$, pH 5.8. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. The shoot was incubated in the rooting media with 1/2 MS + 30 g/L sucrose + 0.1 mg/L IAA + 50 mg/L kanamycin + 500 mg/L cefotaxime, pH 5.8 and moved to pot for acclimation. Although the shoot development rate was depended on the genotype, the G5 was the best line to be transformed. Monitoring GFP expression from the young shoot under microscope could make the selection much easier to distinguish the transformed shoot from the non-transformed shoots.

Expression of GFP Gene Driven by the Olive Flounder (Paralichthys olivaceus) hsc70 Promoter in Trangenic Medaka (Oryzias latipes) (넙치 (Paralichthys olivaceus) 열충격 유전자 hsp70 조절부위에 의한 형광단백질의 발현)

  • Lee, Jeong-Ho;Kim, Jong-Hyun;Noh, Jae Koo;Kim, Hyun Chul;Kim, Woo-Jin;Kim, Young-Ok;Kim, Kyung-Kil
    • Korean Journal of Ichthyology
    • /
    • v.19 no.4
    • /
    • pp.266-273
    • /
    • 2007
  • Heat shock proteins (HSPs) are a family of highly conserved proteins playing an important role in the functioning of unstressed and stressed cells. The HSP70 family, the most widely studied of the hsps, is constitutively expressed (hsc70) in unstressed cells and is also induced in response to stressors (hsp70), especially those affecting the protein machinery. The HSP/HSC70 proteins act as molecular chaperones and are crucial for protein functioning, including folding, intracellular localization, regulation, secretion, and protein degradation. Here, we report the identification and characterization of the putative amino acid sequence deduced from one cDNA clone identified as heat shock protein 70. The alignment showed that the putative sequence is 100% identical to the heat shock protein 70 cognate (HSC 70) of olive flounder. The 5'-flanking region sequence (approximately 1 kb) ahead of the hsc70 gene was cloned by genome walking and a putative core promoter region and transcription elements were identified. We characterized the promoter of the olive flounder hsc70 gene by examining the ability of 5'-upstream fragments to drive expression of green fluorescent protein (GFP) in live embryos.