• 제목/요약/키워드: GFP expression

검색결과 306건 처리시간 0.028초

Characterizations of Cell Lineage Markers in the Bone Marrow Cells of Recloned GFP Pigs for Possible Use of Stem Cell Population

  • Park, Kwang-Wook;Choi, Sung-Sik;Lee, Dong-Ho;Lee, Hwang;Choi, Seung-Kyu;Park, Chang-Sik;Lee, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.23-31
    • /
    • 2011
  • Two piglets and one juvenile pig were used to investigate closely what types of cells express green fluorescent protein (GFP) and if any, whether the GFP-tagged cells could be used for stem cell transplantation research as a middle-sized animal model in bone marrow cells of recloned GFP pigs. Bone marrow cells were recovered from the tibia, and further analyzed with various cell lineage markers to determine which cell lineage is concurrently expressing visible GFP in each individual animal. In the three animals, visible GFP were observed only in proportions of the plated cells immediately after collection, showing 41, 2 and 91% of bone marrow cells in clones #1, 2 and 3, respectively. The intensity of the visible GFP expression was variable even in an individual clone depending on cell sizes and types. The overall intensities of GFP expression were also different among the individual clones from very weak, weak to strong. Upon culture for 14 days in vitro (14DIV), some cell types showed intensive GFP expression throughout the cells; in particular, in cytoskeletons and the nucleus, on the other hand. Others are shown to be diffused GFP expression patterns only in the cytoplasm. Finally, characterization of stem cell lineage markers was carried out only in the clone #3 who showed intensive GFP expression. SSEA-1, SSEA-3, CD34, nestin and GFAP were expressed in proportions of the GFP expressing cells, but not all of them, suggesting that GFP expression occur in various cell lineages. These results indicate that targeted insertion of GFP gene should be pursued as in mouse approach to be useful for stem cell research. Furthermore, cell- or tissue-specific promoter should also be used if GFP pig is going to be meaningful for a model for stem cell transplantation.

The Effect of Cucumber mosaic virus 2b Protein to Transient Expression and Transgene Silencing Mediated by Agro-infiltration

  • Choi, Min-Sue;Yoon, In-Sun;Rhee, Yong;Choi, Seung-Kook;Lim, Sun-Hyung;Won, So-Youn;Lee, Yeon-Hee;Choi, Hong-Soo;Lee, Suk-Chan;Kim, Kook-Hyung;Lomonossoff, George;Sohn, Seong-Han
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.296-304
    • /
    • 2008
  • The transient and rapid expression system of a foreign protein in planta is a very useful technique in biotechnology application. We have investigated optimum condition of Agrobacterium-infiltration technique in which expression level of foreign proteins were maximized without detrimental effects on plants using GFP and Cucumber mosaic virus 2b protein, which is known as an enhancer of gene expression and a suppressor of post-transcriptional gene silencing(PTGS). The optimum expression level of both RNA and protein of GFP with minimum leaf impairment was obtained at $OD_{600}$=0.2 of Agrobactrium inocula. The steady-state levels of GFP RNA and protein generally peaked at 3 and 7 days post-infiltration(dpi), respectively. In the presence of 2b, both the magnitude and duration of GFP expression was highly increased and we could detect GFP level until 17 dpi. On the other hands, the 2b-mediated higher accumulation of foreign proteins resulted in the repression of normal leaf growth, possibly due to the limitation of supply of energy or materials required for growth maintenance. Using this Agrobacterium-infiltration system with 2b and GFP, we tested a hypothesis for the threshold model of PTGS initiation. Four GFP transgenic lines of N. benthamiana, which shows different expression level of GFP were tested to determine the threshold level for PTGS initiation. Agrobacterium-infiltration of GFP into those GFP-transgenic plants resulted in the co-silencing of the transgenic GFP. It was found that very low concentration of Agrobacterium with GFP and GFP+2b($OD_{600}$=0.002-0.02) which could not phenotypically induce an additive GFP expression, was enough to trigger PTGS pathway in all GFP transgenic plants. This strongly indicates that each GFP-transgenic plant should be expressing the transgenic GFP at its own pre-determined level and there was no buffer zone of additive GFP-expression to the threshold. In other words, the PTGS seems to be immediately activated as a self-defensive mechanism if an internal balance of gene expression is broken.

The Use of a Tobacco mosaic virus-Based Expression Vector System in Chrysanthemum

  • Park, Minju;Baek, Eseul;Yoon, Ju-Yeon;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • 제33권4호
    • /
    • pp.429-433
    • /
    • 2017
  • Chrysanthemums (Chrysanthemum morifolium) are susceptible to tobacco mosaic virus (TMV). TMV-based expression vectors have been used in high-throughput experiments for production of foreign protein in plants and also expressing green fluorescent protein (GFP) to allow visualization of TMV movement. Here, we used TMV expressing the GFP to examine the infection of chrysanthemum by a TMV-based expression vector. Viral replication, movement and GFP expression by TMV-GFP were verified in upper leaves of chrysanthemums up to 73 days post inoculation (dpi) by RT-PCR. Neither wild-type TMV nor TMV-GFP induced symptoms. GFP fluorescence was seen in the larger veins of the inoculated leaf, in the stem above the inoculation site and in petioles of upper leaves, although there was no consistent detection of GFP fluorescence in the lamina of upper leaves under UV. Thus, a TMV-based expression vector can infect chrysanthemum and can be used for the in vivo study of gene functions.

Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper

  • Jung, Min;Shin, Sun-Hee;Park, Jeong-Mi;Lee, Sung-Nam;Lee, Mi-Yeon;Ryu, Ki-Hyun;Paek, Kee-Yoeup;Harn, Chee-Hark
    • Plant Biotechnology Reports
    • /
    • 제5권2호
    • /
    • pp.157-167
    • /
    • 2011
  • In order to establish a reliable and highly efficient method for genetic transformation of pepper, a monitoring system featuring GFP (green fluorescent protein) as a report marker was applied to Agrobacteriummediated transformation. A callus-induced transformation (CIT) system was used to transform the GFP gene. GFP expression was observed in all tissues of $T_0$, $T_1$ and $T_2$ peppers, constituting the first instance in which the whole pepper plant has exhibited GFP fluorescence. A total of 38 T0 peppers were obtained from 4,200 explants. The transformation rate ranged from 0.47 to 1.83% depending on the genotype, which was higher than that obtained by CIT without the GFP monitoring system. This technique could enhance selection power by monitoring GFP expression at the early stage of callus in vitro. The detection of GFP expression in the callus led to successful identification of the shoot that contained the transgene. Thus, this technique saved lots of time and money for conducting the genetic transformation process of pepper. In addition, a co-transformation technique was applied to the target transgene, CaCS (encoding capsaicinoid synthetase of Capsicum) along with GFP. Paprika varieties were transformed by the CaCS::GFP construct, and GFP expression in callus tissues of paprika was monitored to select the right transformant.

Different expression of human GFAP promoter-derived GFP in different subsets of astrocytes in the mouse brain

  • Moon, Young-Hye;Kim, Hyun-Jung;Kim, Joo-Yeon;Kim, Hyun;Kim, Woon-Ryoung;Sun, Woong
    • Animal cells and systems
    • /
    • 제15권4호
    • /
    • pp.268-273
    • /
    • 2011
  • Transgenic mice expressing green fluorescent protein (GFP) under the control of human glial fibrillary acidic protein promoter (hGFAP) have been utilized for in vivo labeling of astrocytes. Although it has been considered that virtually all astrocytes express GFP in this transgenic mouse, we found that different subsets of GFAP-expressing astrocytes express considerably different levels of GFP in the adult brain. Astrocytes in the spinal cord, the molecular layer of thecerebellum, meninges, white matter, corpus callosum and blood vessels exhibited strong GFP, whereas subsets of astrocytes associated with granule cells in the cerebellum and dentate gyrus did not or only marginally exhibited GFP. We also found that a small subset of GFP-expressing cells in the periglomeruli of the olfactory bulb did not express GFAP immunoreactivity. Collectively, these results suggest that human GFAP promoter-derived GFP expression does not faithfully recapitulate the endogenous GFAP expression in mice, suggesting that upstream regulatory mechanisms controlling GFAP transcription are different in different populations of astrocytes, and may reflect the functional diversity of astrocytes.

Trap identification of the constitutive promoter-like sequences from the bacterial fish pathogen, as exemplified by Edwardsiella tarda

  • Lee, Sang-Yoon;Kim, Ki-Hong;Kim, Dong-Soo;Nam, Yoon-Kwon
    • 한국어병학회지
    • /
    • 제24권3호
    • /
    • pp.297-305
    • /
    • 2011
  • A trap identification system for isolating functional sequences to allow the constitutive expression of foreign protein from Edwardsiella tarda was developed. Using the green fluorescent protein (GFP) reporter-based trap system, various functional sequences to drive heterologous expression of the GFP were selectable in Escherichia coli host. However from the bioinformatic sequence analysis, all the segments predicted as regulatory regions were not native promoters actually existing upstream of endogenous E. tarda genes. Instead, a number of non-authentic sequences, possibly resulted from the random shuffling and/or intermolecular ligation were also proven to be able to display a potent GFP expression in the recombinant E. coli. Further analysis with selected clones showed that both authentic and non-authentic sequences could function in as a constitutive promoter, leading quite a consistent and stable GFP expression after repetitive subcultures. Microscopic examination also confirmed the uniform pattern of GFP expression in every host bacterium. Semi-quantitative assay of GFP showed that there was no clear relationship between expression levels and organizational features of the promoters trapped. Functional promoter-like elements achieved in the present study could be a good starting material for multivalent genetic engineering of E. tarda in order to produce recombinant vaccines in a cost-effective fashion.

Cell growth and GFP expression in E. coli BL21 and W3110 under coexpression of Vitreoscilla hemogobin

  • 강동균;김연규;차형준
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.754-757
    • /
    • 2001
  • Expression of the vhb gene encoding bacterial hemoglobin (VHb) from Vitreoscilla has been used to improve recombinant cell growth and enhance product formation under microaerobic conditions because of its ability to enhance oxygen use. We coexpressed GFP and VHb in Escherichia coli BL21 and W3110, and compared with GFP control which was not expressed VHb. We used nar oxygen-dependent inducible promoter for VHb expression. The GFP amounts in E. coli expressed VHb was about five fold higher than in the control Fluorescence intensity was increased about two fold.

  • PDF

토끼 수정란에서 Green Fluorescent Protein 유전자의 발현 (Expression of Green Fluorescent Protein(GFP) Gene in Rabbit Embryos)

  • 강태영;윤희준;채영진;이항;이효종
    • 한국수정란이식학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 1999
  • The efficiency of transgenic livestock animal production may be improved by early selection of transgenci preimplantation embryos. To examine the possibility of GFP gene as a non-invasive marker for the early screening of transgenic embryo, the GFP gene was microinjected into rabbit zygotes and the later stages of preimplantation embryos were examined for the expression of GFP. The presence of injected DNA was detected by PCR analysis and the expression of GFP was detected by observing green fluorescence in embryos under a fluorescent microscope. Out of 108 GFP gene-injected rabbit zygotes, seventy three(67.6%) were fluorescence-positive. When 11 fluroresecence-positive blastocysts were analyzed for the presence of GFP gene by PCR, 6(54.5%) were positive, and all of the 8 flrouescence-negative blastocysts were also negative by PCR. The results indicate that the screening of transgene in rabbit embryos by PCR analysis and GFP detection could be a promising method for the preselection of transgenic embryos.

  • PDF

Efficient transgene expression system using a cumate-inducible promoter and Cre-loxP recombination in avian cells

  • Park, Tae Sub;Kim, Si Won;Lee, Jeong Hyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권6호
    • /
    • pp.886-892
    • /
    • 2017
  • Objective: Transgenic technology is widely used for industrial applications and basic research. Systems that allow for genetic modification play a crucial role in biotechnology for a number of purposes, including the functional analysis of specific genes and the production of exogenous proteins. In this study, we examined and verified the cumate-inducible transgene expression system in chicken DF1 and quail QM7 cells, as well as loxP element-mediated transgene recombination using Cre recombinase in DF1 cells. Methods: After stable transfer of the transgene with piggyBac transposon and transposase, transgene expression was induced by an appropriate concentration of cumate. Additionally, we showed that the transgene can be replaced with additional transgenes by co-transfection with the Cre recombinase expression vector. Results: In the cumate-GFP DF1 and QM7 cells, green fluorescent protein (GFP) expression was repressed in the off state in the absence of cumate, and the GFP transgene expression was successfully induced in the presence of cumate. In the cumate-MyoD DF1 cells, MyoD transgene expression was induced by cumate, and the genes controlled by MyoD were upregulated according to the number of days in culture. Additionally, for the translocation experiments, a stable enhanced green fluorescent protein (eGFP)-expressing DF1 cell line transfected with the loxP66-eGFP-loxP71 vector was established, and DsRed-positive and eGFP-negative cells were observed after 14 days of co-transfection with the DsRed transgene and Cre recombinase indicating that the eGFP transgene was excised, and the DsRed transgene was replaced by Cre recombination. Conclusion: Transgene induction or replacement cassette systems in avian cells can be applied in functional genomics studies of specific genes and adapted further for efficient generation of transgenic poultry to modulate target gene expression.

GFP gene expression in transfected rainbow trout fibroblast cell line RTG-2 using a polycationic reagent (Superfect)

  • Lee , Jeong Ho;Hong , Su Hee;Kim , Han Woo;Kim , Young Ok;Kim, Kyung Kil
    • 한국어병학회지
    • /
    • 제16권2호
    • /
    • pp.69-73
    • /
    • 2003
  • In this study, GFP reporter gene was transfected into a fibroblast cell line RTG-2 using a polycationic transfection reagent (Superfect) and showed a successful expression of GFP. The transfection efficiency by Superfect was compared to the commonly used transfection method, i.e. DNA-calcium phosphate coprecipitatlon. Transfection by Superfect was more effective than calcium phosphate coprecipltation method (frequency of cell expressing orr was 11.3% and 3.5%, respectively). The optimal expression of GFP and {\beta}-galactosidase was observed when $5-6\;{\mu}{\ell}$ of Superfect per ${\mu}g$ DNA was used for transfcction, 1:5-6 ratio between DNA(${\mu}g$) and Superfect ($\mu\ell$).