효율적인 암호 시스템의 설계는 환경에 적합한 유한체 연산이 뒷받침되어야 한다 특히 유한체에서의 역원 연산은 다른 연산에 비해 가장 많은 수행시간을 소비하므로, 개선에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 다항식 기저를 기반으로 Extended binary god algorithm (EBGA)를 이용한 유한체 $GF(2^m)$에서의 고속 역원 알고리즘을 제안한다. 제안된 역원 알고리즘은 EBGA보다 $18.8\%$, Montgomery inverse algorithm (MIA)보다 $45.9\%$ 적은 수행횟수를 가진다. 또한 기존에 제안된 시스톨릭 어레이 구조 (Systolic array structure)는 유한체 차수 m이 증가하는 경우 많은 하드웨어 리소스가 요구된다. 따라서 스마트 카드나 모바일 폰 등과 같은 경량화와 저전력이 요구되는 환경에는 적용하기 힘들다. 본 논문에서는 경량화된 암호 시스템 환경을 바탕으로 공간복잡도가 적으면서 동기화된 연산을 수행하는 새로운 하드웨어 구조를 제시한다. 본 논문에서 제안된 하드웨어 구조는 유한체 $GF(2^m)$에서의 역원을 계산하기 위해 기존의 알고리즘보다 적은 덧셈 연산과 모듈러 감산 연산을 포함하고 있으며, 유한체 $GF(2^m)$와 GF(p)에 적용이 가능한 통합된 역원기이다.
본 논문에서는 유한 체 $GF(2^m)$상에서 셀룰라 오토마타 (Cellular Automata)의 구조에 적합한 곱셈기 구조를 제안한다. 제안된 LSB 우선 곱셈 구조는 AOP(All One Polynomial)를 기약 다항식으로 사용하며, m+1의 지연시간과 $ 1-D_{AND}+1-D{XOR}$의 임계경로를 갖는다. 특히 정규성, 모듈성, 병렬성을 가지기 때문에 VLSI구현에 효율적이고 나눗셈기, 지수기 및 역원기를 설계하는 데 기본 구조로 사용될 수 있다 또한, 이 구조는 유한 체 상에서 Diffie-Hellman 키 교환 프로토콜, 디지털 서명 알고리즘, 및 ElGamal 암호화와 같이 잘 알려진 공개키 정보 보호 서비스를 위한 기본 구조로 사용될 수 있다.
In this paper, a new high speed parallel input and parallel output GF(2$^{m}$ ) multiplier based on standard basis is proposed. The concept of the multiplication in standard basis coordinates gives an easier VLSI implementation than that of the dual basis. This proposed algorithm and method of implementation of the GF(2$^{m}$ ) multiplication are represented by two kinds of basic cells (which are the generalized and fixed basic cell), and the minimum critical path with pipelined operation. In the case of the generalized basic cell, the proposed multiplier is composed of $m^2$ basic cells where each cell has 2 two input AND gates, 2 two input XOR gates, and 2 one bit latches Specifically, we show that the proposed multiplier has smaller complexity than those proposed in 〔5〕.
In this paper, a method for constructing parallel-in, parallel-out multipliers in GF($2^{m}$) is presented. The proposed system is composed of two operational parts by using shift register. One is a multiplicative arithmetical operation part capable of the multiplicative arithmetic and modulo 2 operation to all product terms with the same degree. And the other is an irreducible polynomial operation part to outputs from the multiplicative arithmetical operation part. Since the total hardware is linearly m dependant to an GF($2^{m}$), this system has a reasonable merit when m increases. And also this system is suited for VLSI implementation due to simple, regular, and concurrent properties.
본 논문에서는 KOA를 적용하여 유한체 승산의 새로운 연산기법을 제시하였다. 먼저, 승산의 전개를 위해 주어진 다항식을 2분 또는 3분하여 각각 2항식과 3항식으로 재구성한 후 정의된 보조다항식을 사용하여 승산을 이루도록 하였다. 승산된 다항식에 모듈러 환원을 적용하기 위해 mod $F({\alpha})$ 연산식을 새롭게 전개하여 제시하였다. 제시된 연산기법들을 적용하여 $GF(2^m)$상의 승산회로를 구성하였고, Parr의 회로와 비교하였다. 비교논문의 경우 $GF((2^4)^n)$을 전제함으로써 그 적용이 매우 제한적이나, 본 논문에서는 $m=2^n$과 $m=3^n$인 경우를 보임으로써 그 적용이 Parr의 회로에 비해 보다 확장되었다.
현재 사용되고 있는 유한체 GF(q)위의 non-supersingular 타원곡선 이산대수문제에 기반한 공개키 암호법의 안전성을 보장하기 위해서는 타원곡선의 위수의 크기와 소인수의 크기를 계산하는 일이 매우 중요하다. 그런데 타원곡선의 위수를 구하는 전통적인 방법인 Schoof 알고리즘은 매우 복잡하여 지금도 개선작업이 진행중이다. 본 논문에서는 복잡한 Schoof 알고리즘을 피하기 위하여, 표수가 2인 유한체의 합성체$GF(2^m)=GF(2^{rs})=GF((2^r)^s)$ 위에서 Weil 정리를 이용하여 타원곡선의 위수를 계산하는 방법을 제안한다. 또한, 그에 따른 알고리즘과 그 알고리즘을 적용한 프로그램을 실행하여 타원곡선 암호법에 사용될 수 있는 효율적인 곡선으로 ${\sharp}E(GF(2^5))=36$일 때의 합성체 $GF(2^5)^{31})$ 위에서 위수에 $10^{40}$ 이상인 소인수를 포함하는 non-supersingular 타원곡선을 찾을 수 있었다.
본 논문에서는 유한체 $GF(2^m)$의 응용을 위한 새로운 비트-시리얼 나눗셈 회로를 제안한다. 제안된 나눗셈 회로는 수정된 바이너리 최대 공약수 알고리즘에 기반하며, 2m-1 클락 사이클 비율로 나눗셈 결과를 출력한다. 본 연구에서 제안된 회로는 기존의 비트-시리얼 나눗셈 회로에 비해 속도에서 $43\%$, 칩 면적에서 $20\%$의 성능 개선을 보인다. 또한 제안된 회로는 기약다항식의 선택에 있어 어떠한 제약 조건도 두지 않을 뿐 아니라 매우 규칙적이고 모듈화 하기 쉽기 때문에 필드 크기 m에 대해 높은 유연성 및 확장성을 제공한다. 따라서 본 논문에서 제안된 나눗셈 회로는 저면적을 요구하는 $GF(2^m)$의 응용에 매우 적합하다.
유한 필드 GF(2$^{m}$ ) 상에서의 곱셈은 Diffie-Hellman key exchange, EIGamal과 같은 공개키 암호시스템에서의 기본적인 연산이다. 본 논문에서 는 셀룰러 오토마타를 이용하여 GF(2$^{m}$ ) 상에서 몽고메리 곱셈을 m 클럭 사이클만에 처리하는 새로운 구조를 제시 하였다. 본 논문에서 제시된 몽고메리 곱셈기는 모듈러 지수기, 나눗셈기, 곱셈의 역원기등을 효율적으로 구현하는데 활용될 수 있다. 또한 셀룰러 오토마타는 간단하고도 규칙적이며, 모듈화 하기 쉽고 계층화 하기 쉬운 구조이므로 VLSI구현에도 효율적으로 활용될 수 있다.
유한체의 H/W 구현에는 정규기저를 사용하는 것이 효과적이며, 특히 타입 I의 최적 정규기저를 갖는 유한체의 H/W 구현이 효율적이다 Massey-Omura등이 직렬곱셈 연산기를 제안한 이후 Agnew 등이 이를 개선하였으며 최근에 Reyhani-Masoleh 와 Hasan은 공간 복잡도는 크게 개선하였으나 Path Delay가 조금 늘어난 연산기를 제안하였고 2004년에는 Kwon 등이 Agnew등의 것과 같은 Path Delay를 가지나 공간 복잡도는 Reyhani-Masoleh와 Hasan등의 것 보다 조금 더 큰 연산기를 제시하였다. 이 논문에서는 타입 (m, k) 인 가우스 주기를 갖는 유한체 중에서 $GF(mk+1)^{\ast}$=<2>를 만족하는 유한체 $GF(2^m)$은 타입 I 최적 정규기저를 갖는 유한체인 $GF(2^{mk})$의 부분체인 것을 이용하여 Reyhani-Masoleh 와 Hasan의 직렬 곱셈 연산기를 재구성하여 같은 면적 복잡도를 유지하면서 XOR Time Delay를 개선한 직렬곱셈 연신기를 구성하였다. 즉, k=4,6 인 경우는 Kwon등의 경우와 같은 Path Delay를 가지나 공간 복잡도 에서 효율적이고, k=10인 경우는 XOR Path Delay en 경우 보다 20\%$ 개선되었고, 공간 복잡도는 Reyhani-Masoleh 와 Hasan의 것과는 같고 Kwon등의 것 보다는 XOR gate 가 32개 줄어든 효율적인 연산기 이다.
유한체의 H/W 구현에는 정규기저를 사용하는 것이 효과적이며, 특히 타입 I의 최적 정규기저를 갖는 유한체의 H/W 구현이 가장 효율적이다. 이를 이용하기 위하여 타입 (m,k) 인 가우스 주기를 갖는 유한체 중에서 $GF(mk+1)^{\ast}$=<2>를 만족하는 유한체 $GF(2^m)$을 타입 I 최적 정규기저를 갖는 유한체인 $GF(2^{mk})$의 부분체인 것을 이용한 새로운 병렬곱셈 연산기를 제안하였으며, 이러한 곱셈기는 암호학적으로 널리 응용되는 타입 k=2, 4, 6등의 경우에 기존에 알려진 가장 효율적인 Reyhani-Masoleh 과 Hasan의 연산기와 같은 복잡도를 갖는 효과적인 연산기이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.