• Title/Summary/Keyword: GF($2^{m}$)

Search Result 313, Processing Time 0.028 seconds

Color image Decryption Algorithm using $GF(2^m)$ inverse ($GF(2^m)$ 역산을 이용한 컬러 영상 복호화 알고리즘)

  • Lee, Kwang-Ok;Bae, Sang-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.833-836
    • /
    • 2007
  • Nowadays, the rapid increase of the available amount of internet and system performance has revealed urgent need a method of decryption about digital encryption for stabilization of multimedia data transmission. In this paper, we propose a method of decryption of each frame about video data. Also for advanced decryption, we propose color image decryption method through 4-bit binary of $GF(2^m)$ inverse about an each frame.

  • PDF

Low Complexity GF(2$^{m}$ ) Multiplier based on AOP (회로 복잡도를 개선한 AOP 기반의 GF(2$^{m}$ ) 승산기)

  • 변기영;성현경;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2633-2636
    • /
    • 2003
  • This study focuses on the new hardware design of fast and low-complexity multiplier over GF(2$\^$m/). The proposed multiplier based on the irreducible all one polynomial (AOP) of degree m, to reduced the system's complexity. It composed of Cyclic Shift, Partial Product, and Modular Summation Blocks. Also it consists of (m+1)$^2$2-input AND gates and m(m+1) 2-input XOR gates. Out architecture is very regular, modular and therefore, well-suited for VLSI implementation.

  • PDF

A Study on the Generation and Characteristics of Non-Binary GMW Code Sequences for Spread Spectrum Communication System (대역확산 통신시스템을 위한 비이원 GMW 부호계열 발생 및 특성에 관한 연구)

  • 이정재;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 1990
  • Using the trace mapping, we suggest the generating algorithm of non-binary GMW code sequences, to expand the ground field GF(2) into GF(p), p>2. And constructing non-binary GMW code sequences over GF(3) and GF(5), respectively, it is shown that they have the Hamming autocorrelation functions identical to m-sequences, non-linearity to improve the disadvantages of linearity, and balance properties.

  • PDF

The Design of $GF(2^m)$ Multiplier using Multiplexer and AOP (Multiplexer와AOP를 적응한 $GF(2^m)$ 상의 승산기 설계)

  • 변기영;황종학;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • This study focuses on the hardware implementation of fast and low-complexity multiplier over GF(2$^{m}$ ). Finite field multiplication can be realized in two steps: polynomial multiplication and modular reduction using the irreducible polynomial and we will treat both operation, separately. Polynomial multiplicative operation in this Paper is based on the Permestzi's algorithm, and irreducible polynomial is defined AOP. The realization of the proposed GF(2$^{m}$ ) multipleker-based multiplier scheme is compared to existing multiplier designs in terms of circuit complexity and operation delay time. Proposed multiplier obtained have low circuit complexity and delay time, and the interconnections of the circuit are regular, well-suited for VLSI realization.

Digit-Parallel/Bit-Serial Multiplier for GF$(2^m)$ Using Polynomial Basis (다항식기저를 이용한 GF$(2^m)$ 상의 디지트병렬/비트직렬 곱셈기)

  • Cho, Yong-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.892-897
    • /
    • 2008
  • In this paper, a new architecture for digit-parallel/bit-serial GF$(2^m)$ multiplier with low latency is proposed. The proposed multiplier operates in polynomial basis of GF$(2^m)$ and produces multiplication results at a rate of one per D clock cycles, where D is the selected digit size. The digit-parallel/bit-serial multiplier is faster than bit-serial ones but with lower area complexity than bit-parallel ones. The most significant feature of the proposed architecture is that a trade-off between hardware complexity and delay time can be achieved.

Low System Complexity Bit-Parallel Architecture for Computing $AB^2+C$ in a Class of Finite Fields $GF(2^m)$ (시스템 복잡도를 개선한 $GF(2^m)$ 상의 병렬 $AB^2+C$ 연산기 설계)

  • 변기령;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.24-30
    • /
    • 2003
  • This study focuses on the arithmetical methodology and hardware implementation of low system-complexity A $B^2$+C operator over GF(2$^{m}$ ) using the irreducible AOP of degree m. The proposed parallel-in parallel-out operator is composed of CS, PP, and MS modules, each can be established using the array structure of AND and XOR gates. The proposed multiplier is composed of (m+1)$^2$ 2-input AND gates and (m+1)(m+2) 2-input XOR gates. And the minimum propagation delay is $T_{A}$ +(1+$\ulcorner$lo $g_2$$^{m}$ $\lrcorner$) $T_{x}$ . Comparison result of the related A $B^2$+C operators of GF(2$^{m}$ ) are shown by table, It reveals that our operator involve more lower circuit complexity and shorter propagation delay then the others. Moreover, the interconnections of the out operators is very simple, regular, and therefore well-suited for VLSI implementation.

A Study on Design of High-Speed Parallel Multiplier over GF(2m) using VCG (VCG를 사용한 GF(2m)상의 고속병렬 승산기 설계에 관한 연구)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.628-636
    • /
    • 2010
  • In this paper, we present a new type high speed parallel multiplier for performing the multiplication of two polynomials using standard basis in the finite fields GF($2^m$). Prior to construct the multiplier circuits, we design the basic cell of vector code generator(VCG) to perform the parallel multiplication of a multiplicand polynomial with a irreducible polynomial and design the partial product result cell(PPC) to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial with VCG circuits. The presented multiplier performs high speed parallel multiplication to connect PPC with VCG. The basic cell of VCG and PPC consists of one AND gate and one XOR gate respectively. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields GF($2^4$). Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper uses the VCGs and PPCS repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSL.

Digit-serial $AB^2$ Systolic Architecture in GF$(2^m)$ (GF$(2^m)$상에서 디지트 시리얼 $AB^2$시스톨릭 구조 설계)

  • 김남연;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.415-417
    • /
    • 2003
  • 본 논문에서는 유한 필드 GF(2$^{m}$ ) 상에서 A$B^2$연산을 수행하는 디지트 시리얼(digit-serial) 시스톨릭 구조를 제안하였다. 제안한 구조는 디지트 크기를 적당히 선택했을 때, 비트-패러럴(bit-parallel) 구조에 비해 적은 하드웨어를 사용하고 비트-시리얼(bit-serial) 구조에 비해 빠르다 또한, 제안한 디지트 시리얼 구조에 파이프라인 기법을 적용하면 그렇지 않은 구조에 비해 m=160, L=2 일 때 공간-시간 복잡도가 10.9% 적다.

  • PDF

Design of High-Speed Parallel Multiplier with All Coefficients 1's of Primitive Polynomial over Finite Fields GF(2m) (유한체 GF(2m)상의 기약다항식의 모든 계수가 1을 갖는 고속 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, we propose a new multiplication algorithm for two polynomials using primitive polynomial with all 1 of coefficient on finite fields GF($2^m$), and design the multiplier with high-speed parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $m^2$ same basic cells that have a 2-input XOR gate and a 2-input AND gate. Since the basic cell have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $D_A+D_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

Word Level Multiplier for $GF(2^m)$ Using Gaussian Normal Basis (가우시안 정규기저를 이용한 $GF(2^m)$상의 워드-레벨 곱셈기)

  • Kim, Chang-Hoon;Kwon, Yun-Ki;Kim, Tae-Ho;Kwon, Soon-Hak;Hong, Chun-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1120-1127
    • /
    • 2006
  • [ $GF(2^m)$ ] for elliptic curve cryptosystem. The proposed multiplier uses Gaussian normal basis representation and produces multiplication results at a rate of one per [m/w] clock cycles, where w is the selected we.4 size. We implement the p.oposed design using Xilinx XC2V1000 FPGA device. Our design has significantly less critical path delay compared with previously proposed hard ware implementations.