• Title/Summary/Keyword: GENETIC STRUCTURE

Search Result 1,618, Processing Time 0.028 seconds

Comparison of Genetic Diversity and Population Structure of Kalopanax pictus (Araliaceae) and its Thornless Variant Using RAPD

  • Huh, Man-Kyu;Jung, Sang-Duk;Moon, Heung-Kyu;Kim, Sea-Hyun;Sung, Jung-Sook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • Kalopanax pictus is a long-lived woody species mostly distributed in East Asia. K. pictus has been regarded as medically and ecologically important species in Korea. Thornless castor aralia variant, local name 'Cheongsong' is an endemic to Cheongsong province in Korea. Random amplified polymorphic DNA (RAPD) was used to investigate the genetic variation and structure of Korean populations of two species. A high level of genetic variation was found in six K. pictus populations. Twelve primers revealed 49 loci, of which 29 were polymorphic (59.2%). Nei's gene diversity for K.pictus and K. pictus variant were 0.119 and 0.098, respectively. Mean of genetic diversity in K. pictus was higher than average values for species with similar life history traits. The asexual and sexual reproduction, perennial habitat, and longevity are proposed as possible factors contributing to high genetic diversity. An indirect estimate of the number of migrants per generation (Nm=0.857) indicated that gene flow was not extensive among Korean populations of K.pictus. It is suggested that the isolation of geographical distance and reproductive isolation between K.pictus and K.pictus variant populations may have played roles in shaping the population structure of this species.

Genetic Diversity and Population Structure of Mongolian Wheat Based on SSR Markers: Implications for Conservation and Management

  • Ya, Narantsetseg;Raveendar, Sebastin;Bayarsukh, N;Ya, Myagmarsuren;Lee, Jung-Ro;Lee, Kyung-Jun;Shin, Myoung-Jae;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Gi-An
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • Production of spring wheat, the major crop in Mongolia, accounts for 98% of the cultivated area. Understanding genetic variability in existing gene bank accessions is critical for collection, conservation and use of wheat germplasms. To determine genetic diversity and population structure among a representative collection of Mongolian local wheat cultivars and lines, 200 wheat accessions were analyzed with 15 SSR markers distributed throughout the wheat genome. A total of 85 alleles were detected, with three to five alleles per locus and a mean genetic richness of 5.66. Average genetic diversity index was 0.69, with values ranging from 0.37-0.80. The 200 Mongolian wheat accessions were mainly divided into two subgroups based on structure and phylogenetic analyses, and some phenotypes were divergent by the subgroups. Results from this study will provide valuable information for conservation and sustainable use of Mongolian wheat genetic resources.

Evaluation of the genetic structure of indigenous Okinawa Agu pigs using microsatellite markers

  • Touma, Shihei;Arakawa, Aisaku;Oikawa, Takuro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.212-218
    • /
    • 2020
  • Objective: Agu pigs are indigenous to the Okinawa prefecture, which is the southernmost region of Japan. Agu pigs were exposed to a genetic bottleneck during the 20th century, due to the introduction of European pig breeds. The objective of this study was to elucidate the genetic structure of Agu pigs and to determine their relationships with those of five European breeds, two Chinese breeds and Ryukyu wild boar using microsatellite markers. Methods: A total of 203 DNA samples from 8 pig breeds were used in this study. Genotyping was performed using 21 microsatellite markers distributed across 17 chromosomes. Results: Numbers of effective alleles in Agu pigs were fewer than in European breeds and Ryukyu wild boar. Among domestic pigs, Agu pigs had the lowest heterozygosity (0.423) and highest inbreeding coefficient (FIS = 0.202), indicating a severe loss of heterozygosity in Agu pigs possibly due to inbreeding. Neighbor-joining tree analysis was performed based on Reynolds' genetic distances, which clustered Agu pigs with Duroc pigs. However, principal component analysis revealed a unique genetic position of the Agu pig, and the second principal component separated Agu pigs from all other breeds. Structure analysis with the optimal assumption of seven groups (K = 7) indicated that Agu pigs form an independent cluster from the other breeds. In addition, high and significant FST values (0.235 to 0.413) were identified between Agu pigs and the other breeds. Conclusion: This study revealed a substantial loss of genetic diversity among Agu pigs due to inbreeding. Our data also suggest that Agu pigs have a distinctive genetic structure, although gene flows from European breeds were observed.

Genetic diversity and population structure of Mongolian regional horses with 14 microsatellite markers

  • Yun, Jihye;Oyungerel, Baatartsogt;Kong, Hong Sik
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1121-1128
    • /
    • 2022
  • Objective: This study aimed to identify the genetic diversity and population structure of Mongolian horse populations according to the province of residence (Khentii, KTP; Uvs, USP; Omnogovi and Dundgovi, GOP; Khovsgol, KGP) using 14 microsatellite (MS) markers. Methods: A total of 269 whole blood samples were obtained from the four populations (KTP, USP, GOP, KGP) geographically distinct provinces. Multiplex polymerase chain reaction (PCR) was conducted using 14 MS markers (AHT4, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG6, HTG7, and VHL20), as recommended by the International Society for Animal Genetics. Capillary electrophoresis was conducted using the amplified PCR products, alleles were determined. Alleles were used for statistical analysis of genetic variability, Nei's DA genetic distance, principal coordinate analysis (PCoA), factorial corresponding analysis (FCA), and population structure. Results: On average, the number of alleles, expected heterozygosity (HExp), observed heterozygosity (HObs), and polymorphic information content among all populations were 11.43, 0.772, 0.757, and 0.737, respectively. In the PCoA and FCA, GOP, and KGP were genetically distinct from other populations, and the KTP and USP showed a close relationship. The two clusters identified using Nei's DA genetic distance analysis and population structure highlighted the presence of structurally clear genetic separation. Conclusion: Overall, the results of this study suggest that genetic diversity between KTP and USP was low, and that between GOP and KGP was high. It is thought that these results will help in the effective preservation and improvement of Mongolian horses through genetic diversity analysis and phylogenetic relationships.

Genetic Variation and Population Structure of Crepidiastrum lanceolatum (Compositae)

  • Huh, Man-Kyu;Choi, Joo-Soo
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • Crepidiastrum lanceolatum ($H_{OUTT}$) $N_{AKAI}$ (Compositae) is distributed in East Asia including Korea. Genetic diversity and population structure of six C. lanceolatum populations in Korea and two populations in Japan were determined using genetic variation at 19 allozyme loci. The percent of polymorphic loci within the enzymes was 42.1%. Genetic diversity at the species level and at the population level was low (Hes : 0.077; Hep : 0.068, respectively), where-as the extent of the population divergence was relatively low ($G_{ST}$ : 0.093). One of the most striking features of this study was the more significant difference within populations than among populations. An indirect estimate of the number of migrants per generation (Nm : 2.44) indicated that gene flow was moderate among eight populations of the species. In addition, analysis of fixation indices revealed a slight heterozygosity deficiency in some populations and at some loci. Narrow geographic ranges, short-lived perennial herbaceous, and small population sizes are mainly associated with the low level of genetic variation.n.

  • PDF

Genetic characteristics of Korean Jeju Black cattle with high density single nucleotide polymorphisms

  • Alam, M. Zahangir;Lee, Yun-Mi;Son, Hyo-Jung;Hanna, Lauren H.;Riley, David G.;Mannen, Hideyuki;Sasazaki, Shinji;Park, Se Pill;Kim, Jong-Joo
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.789-800
    • /
    • 2021
  • Objective: Conservation and genetic improvement of cattle breeds require information about genetic diversity and population structure of the cattle. In this study, we investigated the genetic diversity and population structure of the three cattle breeds in the Korean peninsula. Methods: Jeju Black, Hanwoo, Holstein cattle in Korea, together with six foreign breeds were examined. Genetic diversity within the cattle breeds was analyzed with minor allele frequency (MAF), observed and expected heterozygosity (HO and HE), inbreeding coefficient (FIS) and past effective population size. Molecular variance and population structure between the nine breeds were analyzed using a model-based clustering method. Genetic distances between breeds were evaluated with Nei's genetic distance and Weir and Cockerham's FST. Results: Our results revealed that Jeju Black cattle had lowest level of heterozygosity (HE = 0.21) among the studied taurine breeds, and an average MAF of 0.16. The level of inbreeding was -0.076 for Jeju Black, while -0.018 to -0.118 for the other breeds. Principle component analysis and neighbor-joining tree showed a clear separation of Jeju Black cattle from other local (Hanwoo and Japanese cattle) and taurine/indicine cattle breeds in evolutionary process, and a distinct pattern of admixture of Jeju Black cattle having no clustering with other studied populations. The FST value between Jeju Black cattle and Hanwoo was 0.106, which was lowest across the pair of breeds ranging from 0.161 to 0.274, indicating some degree of genetic closeness of Jeju Black cattle with Hanwoo. The past effective population size of Jeju Black cattle was very small, i.e. 38 in 13 generation ago, whereas 209 for Hanwoo. Conclusion: This study indicates genetic uniqueness of Jeju Black cattle. However, a small effective population size of Jeju Black cattle indicates the requirement for an implementation of a sustainable breeding policy to increase the population for genetic improvement and future conservation.

A study on the structure evolution of neural networks using genetic algorithms (유전자 알고리즘을 이용한 신경회로망의 구조 진화에 관한 연구)

  • 김대준;이상환;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.223-226
    • /
    • 1997
  • Usually, the Evolutionary Algorithms(EAs) are considered more efficient for optimal, system design because EAs can provide higher opportunity for obtaining the global optimal solution. This paper presents a mechanism of co-evolution consists of the two genetic algorithms(GAs). This mechanism includes host populations and parasite populations. These two populations are closely related to each other, and the parasite populations plays an important role of searching for useful schema in host populations. Host population represented by feedforward neural network and the result of co-evolution we will find the optimal structure of the neural network. We used the genetic algorithm that search the structure of the feedforward neural network, and evolution strategies which train the weight of neuron, and optimize the net structure. The validity and effectiveness of the proposed method is exemplified on the stabilization and position control of the inverted-pendulum system.

  • PDF

Structure Optimization of a Feedforward Neural Controller using the Genetic Algorithm (유전 알고리즘을 이용한 전방향 신경망 제어기의 구조 최적화)

  • 조철현;공성곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.95-105
    • /
    • 1996
  • This paper presents structure optimization of a feedforward neural netowrk controller using the genetic algorithm. It is important to design the neural network with minimum structure for fast response and learning. To minimize the structure of the feedforward neural network, a genralization of multilayer neural netowrks, the genetic algorithm uses binary coding for the structure and floating-point coding for weights. Local search with an on-line learnign algorithm enhances the search performance and reduce the time for global search of the genetic algorithm. The relative fitness defined as the multiplication of the error and node functions prevents from premature convergence. The feedforward neural controller of smaller size outperformed conventional multilayer perceptron network controller.

  • PDF

In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system

  • Maisha Tasneem;Shipan Das Gupta;Monira Binte Momin;Kazi Modasser Hossain;Tasnim Binta Osman;Fazley Rabbi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2023
  • The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TAS) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TAS PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TAS create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.

Genealogical Relationship between Pedigree and Microsatellite Information and Analysis of Genetic Structure of a Highly Inbred Japanese Black Cattle Strain

  • Sasazaki, S.;Honda, T.;Fukushima, M.;Oyama, K.;Mannen, H.;Mukai, F.;Tsuji, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1355-1359
    • /
    • 2004
  • Japanese Black cattle of Hyogo prefecture (Tajima strain) are famous for its ability to produce high-quality meat and have been maintained as a closed system for more than 80 years. In order to assess the usefulness of microsatellite markers in closed cattle populations, and evaluate the genetic structure of the Tajima strain, we analyzed representative dams of the Tajima strain comprised of the substrains Nakadoi and Kinosaki. Genetic variability analyses indicated low genetic diversity in the Tajima strain. In addition, a recent genetic bottleneck, which could be accounted for by the high level of inbreeding, was detected in both substrains. In phylogenetic analyses, relationship coefficients and genetic distances between individuals were calculated using pedigree and microsatellite information. Two phylogenetic trees were constructed from microsatellite and pedigree information using the UPGMA method. Both trees illustrated that most individuals were distinguished clearly on the basis of the two substrains, although in the microsatellite tree some individuals appeared in clusters of different substrains. Comparing the two phylogenetic trees revealed good consistency between the microsatellite analysis tree and the pedigree information. The correlation coefficient between genetic distances derived from microsatellite and pedigree information was 0.686 with a high significance level (p<0.001). These results indicated that microsatellite information may provide data substantially equivalent to pedigree information even in unusually inbred herds of cattle, and suggested that microsatellite markers may be useful in revealing genetic structure without accurate or complete pedigree nformation. Japanese Black cattle of Hyogo prefecture (Tajima strain) are famous for its ability to produce high-quality meat and have been maintained as a closed system for more than 80 years. In order to assess the usefulness of microsatellite markers in closed cattle populations, and evaluate the genetic structure of the Tajima strain, we analyzed representative dams of the Tajima strain comprised of the substrains Nakadoi and Kinosaki. Genetic variability analyses indicated low genetic diversity in the Tajima strain. In addition, a recent genetic bottleneck, which could be accounted for by the high level of inbreeding, was detected in both substrains. In phylogenetic analyses, relationship coefficients and genetic distances between individuals were calculated using pedigree and microsatellite information. Two phylogenetic trees were constructed from microsatellite and pedigree information using the UPGMA method. Both trees illustrated that most individuals were distinguished clearly on the basis of the two substrains, although in the microsatellite tree some individuals appeared in clusters of different substrains. Comparing the two phylogenetic trees revealed good consistency between the microsatellite analysis tree and the pedigree information. The correlation coefficient between genetic distances derived from microsatellite and pedigree information was 0.686 with a high significance level (p<0.001). These results indicated that microsatellite information may provide data substantially equivalent to pedigree information even in unusually inbred herds of cattle, and suggested that microsatellite markers may be useful in revealing genetic structure without accurate or complete pedigree information.