• Title/Summary/Keyword: GEAR

Search Result 2,760, Processing Time 0.034 seconds

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

Development of a Design System for Multi-Stage Gear Drives (2nd Report : Development of a Generalized New Design Algortitm

  • Chong, Tae-Hyong;Inho Bae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.65-72
    • /
    • 2001
  • The design of multi-stage gear drives is a time-consuming process, since on includes more complicated problems, which are not considered in the design of single-stage gear drives. The designer has th determine the number of reduction stages and the gear ratios of each reduction state. In addition, the design problems include not only the dimensional design but also the configuration design of gear drive elements. There is no definite rule and principle for these types of design problems. Thus the design practices largely depend on the sense and the experiences of the designer , and consequently result in undesirable design solution. We propose a new generalized design algorithm to support the designer at the preliminary design phase of multi-stage gear drives. The proposed design algorithm automates the design process by integrating the dimensional design and the configuration design process. The algorithm consists of four steps. In the first step, a designer determines the number of reduction stage. In the second step. gear ratios se chosen by using the random search method. In the third step, the values of basic design parameter are chosen by using the generate and test method. Then, the values of other dimension, such ad pitch diameter, outer diameter, and face width, are calculated for the configuration design in the final step. The strength and durability of a gear is guaranteed by the bending strength and the pitting resistance rating practices by using the AGMA rating formulas. In the final step, the configuration design is carried out b using the simulated annealing algorithm. The positions of gears and shafts are determined to minimize the geometrical volume(size) of a gearbox, while satisfying spatial constraints between them. These steps are carried out iteratively until a desirable solution is acquired. The propose design algorithm has been applied to the preliminary design of four-stage gear drives in order to validate the availability. The design solution have shown considerably good results in both aspects of the dimensional and the configuration design.

  • PDF

A Study of Effects of the Helical Angle Directions of Planetary Gear Sets on the Axial Forces on Thrust Bearings in an Automatic Transmission (자동변속기 적용 유성기어의 헬릭스 각 방향에 의한 쓰러스트 베어링 작용 축 하중 연구)

  • Kwon, Hyun Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.92-99
    • /
    • 2021
  • An automatic transmission, which consists of several decks of planetary gear sets, provides multiple speed and torque ratios by actuating brakes and clutches (mechanical friction components) for connecting central members of the planetary gear sets. The gear set consists of the sun gear, the ring gear, and the carrier supporting multiple planet gears with pin shafts. In designing a new automatic transmission, there are many steps to design and analyze: gears, brakes and clutches, shafts, and other mechanical components. Among them, selecting thrust bearings that not only allow the relative rotation of the central members and other mechanical components but also support axial forces coming from them is important; doing so yields superior driving performance and better fuel efficiency. In selecting thrust bearings, the magnitude of axial forces on them is a critical factor that affects their bearing size and performance; its results are systematically related to the direction of the helical angle of each planetary gear set (a geometric design profile). This research presents the effects of the helical angle direction on the axial forces acting on thrust bearings in an automatic transmission consisting of planetary gear sets. A model transmission was built by analyzing kinematics and power flows and by designing planetary gear sets. The results of the axial forces on thrust bearings were analyzed for all combinations of helix angle directions of the planetary gear sets.

An Experimental Study and Analysis on NVH Behaviors of the Planetary Gear Set (유성기어세트의 소음 진동 거동에 대한 해석 및 실험적 연구)

  • Lee, Hyun-Ku;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.338-343
    • /
    • 2009
  • In this paper, Verification of the qualitatively identical relationships existing between simulation data and experimental results allowed for a new analysis procedure of a planetary gear set -- in an automatic transmission -- to be conducted. Tooth profiles were found to be crucial to the gear mesh forces of the planetary gear set. Based on Kahraman's Model[8], dynamic resonances of the planetary gear set were found to be out of operating range. Most importantly, a 2DPLANETARY FEM program, an innovative design tool for planetary gear sets, was utilized.

  • PDF

A Study on Mass Reduction of Planetary Gear in Pitch Drive of Medium-sized Wind Turbine (중형 풍력발전기 피치 드라이브의 유성기어 경량화에 관한 연구)

  • Park, Seong-Gyu;Shin, Yoo-In;Kim, Dong-Myoung;Song, Chul-Ki
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.5-10
    • /
    • 2017
  • Pitch drive system in wind turbine is composed by the planetary gear system to satisfied its required performance such as long life and light weight for gear train. When the planetary gear system can reduce its volume and weight, the power consumption of the wind turbine can be reduced. In this study, the planetary gear system of the pitch drive system in medium-sized wind turbine is obtained for weight reduction by shape optimization method. And the planetary gear system is verified for their strength by the structural analysis.

A Study on the System Parameters to Reduce the Idle Gear Rattle (기어 래틀 저감을 위한 시스템 파라미터 연구)

  • 안병민;장일도;최은오;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.88-96
    • /
    • 1998
  • The rattle noise is the most significant in many kinds of manual gearbox nioses, which is generated at the idle stage of the engine operation. The main torsional vibrat- ion source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration. Many researchers reported the clutch torsional characteristic optimization method to reduce the idle gear rattle but only few of them give sufficient consideration to the system parameters like gear backlash, drag torque, system inertia, inertia distribution, engine torque fluctuation, idle engine rotation speed, and accessory load. In this paper, influence rate of system parameters on the gear rattle is presented and counterplans like backlash reduction, drag torque increase, inertia addition, inertia distribution modification and engine torque characteristic control are suggested.

  • PDF

Reliability Analysis of the Spur Gear with Accelerated Life Testing Model (가속수명시험 모델에 따른 평기어의 신뢰성 해석)

  • Kim, Chul-Su;Kwon, Yeo-Hyoun;Kim, Joo-Hyung;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.136-141
    • /
    • 2004
  • The gear in various mechanical components easily occurs at damages by the external torque. The main failure modes of the gear are surface pitting with the tooth surface and breakage with tooth root by caused fatigue. Therefore, the gear is very important role in the reliability research since it may cause fatal damage of entire system such as the gear box in automobile transmission. In this study, the failure mode of the gear was analyzed and accelerated durability analysis was employed for the life estimation of spur gears. In the case of assumed load spectrums, the reliability of spur gears was evaluated by inverse power law-Weibull accelerated life test model with cumulative damage exposure.

  • PDF

Structural Analysis on the System of Differential Gear (차동 기어 장치에 관한 구조 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.279-284
    • /
    • 2009
  • This study investigates the stress at gear by modelling differential gear and using FEM. When gear is driven under power, high equivalent stress of 1596.2MPa is occurred at the stationary shaft. Maximum equivalent stress of 1596.2MPa is also occurred at the bottom and root of tooth and its fatigue life becomes 12.4 as the shortest cycle. As much as it becomes away from the center of gear, the maximum deformation becomes occurred. As exact power is delivered with the precise design of gear, the loss of power energy can be decreased.

  • PDF

An Experimental Study for Predicting the Planetary Gear Noise in the Vehicle (차량에서 유성기어 소음 발생 예측에 대한 실험적 연구)

  • Lee, Hyun-Ku;Kang, Seock-Chan;Bae, Douck-Han;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.929-934
    • /
    • 2007
  • Various methods to improve the planetary gear noise in the vehicle were introduced. And planetary gear systems were analyzed Therefore a common thing among the different planetary gear systems which generate the gear noise in the vehicle was founded. Most importantly, a frequency versus vibration level map was introduced and a predictive method, which is considering the masking effect, to design the planetary gear sets in the concept design stage was described.

  • PDF

Application of Reverse Engineering for Manufacturing Errors at Manufacturing Gear using W-EDM (기어 와어어 컷 가공시 가공오차에 대한 역설계 적용)

  • Han M.S.;Kim M.J.;Kim J.N.;Park J.B.;Jeon E.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.460-463
    • /
    • 2005
  • Gear is an important machine element to be used transmission in case short between axis. We drew gear using automatic design program to solve problem when it draw gear. We manufactured gears that it have different pressure angles using W-EDM. And we got a 2D profile of manufactured gear using reverse engineering. So we got to manufacturing error in comparison with CAD data and measured data. In result we could manufacture precise gear through improvement of manufacturing processes.

  • PDF