• Title/Summary/Keyword: GDL

Search Result 158, Processing Time 0.032 seconds

Thermal Stress Analysis of a Fuel Cell Stack using an Orthotropic Material Model (복합재료 연료전지 스택의 열응력 해석)

  • Jeon Ji Hoon;Hwang Woonbong;Um Sukkee;Kim Soowhan;Lim Tae Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.206-209
    • /
    • 2004
  • Mechanical behavior of a fuel stack was studied using an orthotropic material model. The fuel stack is essentially composed of a bipolar plate (BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is important to maintain a suitable contact pressure distribution of BP, because it influences the power efficiency of the fuel cell stack. When it is exposed to high temperature, its behavior must be stable. Hence, we performed stress analysis at high temperature as well as at room temperature. At high temperature, the contact pressure distribution becomes poor. Many patents have shown that using an elastomer can overcome this phenomena. Its effect was also studied. By using an elastomer, we found a good contact pressure distribution at high temperature as well as at room temperature.

  • PDF

Experimental investigation of growth and transport behavior of single water droplet in a simplified channel of PEM fuel cell (PEM 연료전지의 단순화된 공기극 채널 내 단일 물방울의 성장 및 이동 특성에 대한 실험적 연구)

  • Kim, Bok-Yung;Kim, Han-Sang;Min, Young-Doug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • To investigate the characteristics of water droplet on the gas diffusion layer from both upper-view and side-view of flow channel, a rig test apparatus was designed and fabricated with L-shape acryl plate in a $1mm{\times}1mm$ micro-channel. This experimental device is used to simulate the single droplet growth and its transport process under fuel cell operating condition. As a first step, we investigated the growth and transport of single water droplet with working temperature and air flow velocity. The contact angle and its hysteresis of water droplet at departing moment are measured and analyzed. It is expected that this study can provide the basic understanding of liquid water droplet behavior in gas flow channel and GDL interface during the PEM fuel cell operation.

  • PDF

Influence of heat treatment on corrosion properties of Al-Mg alloy films (Al-Mg 합금막의 부식특성에 미치는 열처리의 영향)

  • Im, Gyeong-Min;Lee, Seung-Hyo;Yun, Yong-Seop;Jeong, Jae-In;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.276-276
    • /
    • 2012
  • 본 연구에서는 진공증착을 이용하여 제작한 Al-Mg막을 $400^{\circ}C$에서 각각 2, 3, 10분간 열처리를 실시하였다. 합금화 정도는 GDLS와 XRD를 이용하여 표면 및 단면의 조성 분포를 분석하였으며, 염수분무시험을 통하여 내식성과의 연관성을 검토하였다. 열처리를 하지 않은 합금막의 경우 열처리를 한 경우와 비교하여 표면 및 단면에 순수한 Al 또는 Mg이 존재하여 내식성이 상대적으로 우수하였다. 열처리 결과 Al-Mg계 금속간 화합물 $Al_3Mg_2$$Al_{12}Mg_{17}$이 관찰되었다.

  • PDF

The Effect of Contact Resistance and Electric Conductivity on PEMFC Performance (접촉저항 및 전기전도도가 연료전지 성능에 미치는 영향)

  • Kim, Gi-Jeong;Yun, Yong-Sik;Jeon, Yu-Taek
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.184-186
    • /
    • 2012
  • In this work, 3-dimensional, non-isothermal numerical simulation was performed to analyse the effects of contact resistance and electric conductivity of GDL on the fuel cell performance. For numerical simulation contact resistance of Carbon and Stainless steel was measured. The simulation results reveal that 10 times change of electric conductivity leads only 6.5% decrease of PEMFC performance. But stainless steel which has high contact resistance decrease fuel cell performance over 25% at a high current density region than carbon. This results show that suitable Surface treatment technology is needed for metal bipolar plate, especially stainless steel.

  • PDF

Effect of Mixed Coagulant on the Rheological Properties of Soybean Curd (이성분 혼합응고제에 의한 두부의 물성 변화)

  • 홍정화;김진우;이재권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1096-1101
    • /
    • 1997
  • Soy curd was prepared using imported soybean(U.S.grade A) and changes in quality were evaluated using different types and mixtures of coagulants(CaCl$_2$, CaSO$_4$, MgCl$_2$, MgSO$_4$, and glucono-$\delta$-lactone). Quality of soy curd was determined by rheological properties, yield, and color. Based upon the characteristics of each coagulant, mixtures of two coagulants were prepared in various ratios. The mixture of CaSO$_4$or MgCl$_2$with glucono-$\delta$-lactone(GDL), and that of CaSO$_4$or MgCl$_2$with MgSO$_4$resulted in soy curd of good quality in terms of rheological properties and yield.

  • PDF

Physicochemical Properties of Commercial Sweet Potato Starches (시판 고구마전분의 이화학적 특성)

  • Baek, Man-Hee;Cha, Dong-Su;Park, Hyun-Jin;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.755-762
    • /
    • 2000
  • Physicochemical properties of commercial sweet potato starches manufactured by 7 different companies were investigated in comparison with corn and potato starches. Crude ash and protein content varied from 0.36 to 1.02%, and from 0.04 to 0.14% based on dry weight, respectively. The protein contents were relatively smaller than that of corn or potato starch. But whiteness of the sweet potato starches was less than that of corn or potato starch. Mean diameter of the sweet potato starch granules varied from 14.23 to $21.08\;{\mu}m$ depending on the company and all sweet potato starches showed bimodal size distributions. Pasting viscosity measured by Rapid Viscoanalyzer(RVA) also showed variations among the starches of different companies. The starch from D company in Korea had the lowest pasting temperature$(74.00^{\circ}C)$ whereas the starch from a phillippine company(P) did the highest one$(80.35^{\circ}C)$. The peak viscosity of sweet potato starches was higher than that of corn starch but lower than that of potato starch. The D company starch also showed the highest peak viscosity(2283 cp) among the starches tested. Paste breakdown by hot shearing ranged from 524 cp (S company) to 1279 cp (HL company). Textural properties of the starch gels appeared significantly different among the starches of different manufacturers. The greatest hardness of the gel was $137.90\;g_{f}$ at 1 day storage whereas the lowest value was $31.53\;g_{f}$. Except the starches from 2 companies (P and S), the sweet potato starches formed very soft and weak gels. P or S company starches formed the gels similar to potato starch. Syneresis by freeze-thawing treatments appeared less for sweet potato starch gels than that for corn starch gels, but greater than that for potato starch gel. The overall properties of the sweet potato starches varied by the manufacturing companies, and ranged between those of corn and potato starches.

  • PDF

Contents and Estimated Intakes of Trans Fatty Acids in Korean Diet (한국인의 식품 중 트란스 지방산의 함량과 섭취량 추정)

  • Kim, Jong-Hee;Jang, Kyung-Won;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1002-1008
    • /
    • 2000
  • The purpose of this study was to provide the fundamental information for establishing the database needed to estimate total intakes of trans fatty acids in Korea. The amounts of trans fatty acids contained in 164 samples including 25 samples of margarines, 21 samples of shortenings, 19 samples of vegetable salad and cooking oils, 53 samples of confectionery products, 18 samples of bakery products, 19 samples of dairy products, and 9 samples of animal fats and meats were analyzed by capillary gas liquid chromatography. The average amounts of trans fatty acids in those foods were calculated and expressed as gram per one serving. Then, the average daily intakes of trans fatty acids per capita were estimated using the analyzed amounts of trans fatty acids and the amount of yearly production for those foods. The amounts of trans fatty acids per 100 g of lipids were $2.11{\sim}33.83%$ (14.66% on average) in margarines, $1.47{\sim}44.48%$ (14.21% on average) in shortenings, $0.18{\sim}3.82$ (1.54% on average) in vegetable salad and cooking oils, $0{\sim}45.81%$ (10.92% on average) in confectionery products, $0{\sim}18.32%$ (7.87% on average) in bakery products, $0.90{\sim}4.54%$ (2.27% on average) in dairy products, and $0.61{\sim}6.07%$ (2.24% on average) in animal fats and meats. Major isomers of trans fatty acid in the sample foods were $C_{18:1}$ and $C_{18:2}$. As a result, the korean average daily intake of trans fatty acids in korea was estimated to be 2.3 g per capita. The amounts of trans fatty acids consumed from each selected food were as follows: 0.35 g from margarines, 0.57 g from shortenings, 0.11 g from vegetable salad and cooking oils, 0.65 g from confectionery products, 0.07 g from bakery products, 0.14 g from dairy products and 0.21 g from animal fats and meats.

  • PDF

Effect of Water Addition and Heating on Textural Properties of Uncompressed SPI Tofu (비압착 분리대두단백 두부의 물리적 특성에 미치는 가수량과 가열조건의 영향)

  • Ku, Kyung-Hyung;Kim, Dong-Won;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.31-36
    • /
    • 1994
  • In order to prepare SPI tofu without compression step, amounts of water added to SPI suspension was studied for textural properties of uncompressed SPI tofu prepared by first heating at $100^{\circ}C$ for 6 minutes and second heating at $75^{\circ}C$ for 25 minutes and use of $CaSO_{4}-GDL$(0.07g, 0.0075 g/g SPI) as coagulants. The hardness and uniformity were gradually increased as the water addition ratio $(gH_{2}O/g\;SPI)$ raised from 6.0 to 8.0 and cohesiveness was rather decreased. The increase in second heating time increased the hardness and gumminess and relativity higher values in hardness were measured for those tofu heated at $85^{\circ}C$ than those at $75^{\circ}C$ or $95^{\circ}C$. A multiple regression equation calculated and RSM figure showed that the effects of water addition ratio was become to be less as the heating time and temperature increased. Addition of 8 g of water per g SPI and second heating at $85^{\circ}C$ for $30{\sim}60$ minutes were found as optimal conditions to prepare uncompressed SPI tofu.

  • PDF

Preparation and Characteristic Studies of Sulfonated Poly (vinyl alcohol) Composite Membranes Containing Aluminum Silicate for PEMFC (고분자 전해질형 연료전지를 위한 알루미늄 실리케이트를 함유한 설폰화 폴리(비닐알코올) 복합막의 제조 및 특성연구)

  • Hwang, In-Seon;Nahm, Kee-Suk;Yoo, Dong-Jin
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes were prepared through the reaction polyvinyl alcohol (PVA) with glutaraldehyde (GLA) as a cross-linking agent and subsequently adding aluminum silicate ($Al_2O_3{\cdot}3SiO_2$) as an inorganic material. The water uptake decreased as the GDL contents increased due to cross-linking process of PVA with GDL, and the ion conductivity increased as the $Al_2O_3{\cdot}3SiO_2$ contents increased in PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes. The cross-linking structure of the polymers was confirmed using IR and the tendency of water uptake. The thermal analysis of the copolymers was carried out by TGA. TGA results showed that PVA/GLA composite membrane were more heat-resistant than PVA due to the cross-linking of PVA, and the heat stability of the composite membranes improved much more as the concentration of $Al_2O_3{\cdot}3SiO_2$ increased. Membranes prepared in this study seem to be have thermal stability and increase a tendency of the cation conductivity up to $60^{\circ}C$, but to be exhibit lower performance tendency at over $90^{\circ}C$. Therefore, it is necessary to do more aggressive effort to explore the possibility of application as an ion-conductive composite electrolyte.

Design Factors of Membrane Electrode Assembly for Direct Methanol Fuel Cells. (직접 메탄올 연료전지용 막-전극 접합체의 설계 인자에 관한 연구)

  • Cho, Jae-Hyung;Hwang, Sang-Youp; Kim, Soo-Kil;Ahn, Dong-June;Lim, Tae-Hoon;Ha, Heung-Yong
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.293-299
    • /
    • 2007
  • Direct coating of catalyst layer on the $Nafion^{(R)}$ membrane has been optimized in the process of fabrication of membrane electrode assembly (MEA) to enhance the performance of direct methanol fuel cell (DMFC). In this method, the contact resistance at the interface of the catalyst layer and the membrane was found to be low. The effect of catalyst loading, thickness of membrane and the gas diffusion layer (GDL) with or without the presence of micro-porous layer (MPL) on the performance of the MEA was also investigated. The MEA fabricated by the above-mentioned method exhibited a performance of $147\;mW/cm^2$ and $100\;mW/cm^2$ at $80^{\circ}C$ and $60^{\circ}C$, respectively, with the catalysts loading of $4\;mg/cm^2$.

  • PDF