• Title/Summary/Keyword: GCM 자료

Search Result 172, Processing Time 0.024 seconds

Simulation Assessment of GCM Model in Case of Daily Precipitation and Temperature (일 강우량 및 기온 자료의 모의를 위한 GCM 모형의 평가)

  • Son, Minwoo;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.307-307
    • /
    • 2019
  • General Ciculation Model (GCM) 모형에 대한 평가를 본 연구에서 수행한다. 모형의 적용을 위해서는 국지적 일 강우량 및 기온자료를 이용한다. 31개의 GCM 모의를 통해 도출되는 결과가 성능 평가에서 활용되었다. 일 최대, 최소 기온와 강우량이 파키스탄 지역을 대상으로 모의되었다. 모의를 위해서는 Gridded 데이터가 적용되었으며 각각 Asian Precipitation-Highly-Resolved Observational Data Integration Toward Evaluation, Berkeley Earth Surface Temperature, Princeton Global Meteorological Forcing, Climate Prediction Centre에 해당된다. GCM의 순위를 결정하기 위해서는 Symmetrical Uncertainty 방법이 이용된다. 결과를 통해서 Gridded 데이터의 종류에 따라 가장 높은 효율을 나타내는 GCM의 공간 분포가 달라진다는 점을 확인하였다. 이러한 특성은 기온과 강우량 자료 모두에서 확인된다. 기온의 경우에는 Commonwealth Scientific and Industrial Research Organization, Australia-MK3-6-0과 Max Planck Institute-ESM-LR이 우수한 결과를 모의하는 것으로 나타났다. 반면 강우량의 경우에는 EC-Earth와 MIROC가 우수한 것으로 나타났다. 파키스탄 지역에서의 기온 및 강우량 자료의 합리적 반영을 위해서는 ACCESS1-3, CESM1-BGC, CMCC-CM, HadGEM2-CC, HadGEM2-ES, MIRCO5와 같은 6개 GCM을 이용하였을 때 다양한 기상 인자를 고려한 모의가 가능한 것으로 평가된다.

  • PDF

Assessing the skills of CMIP5 GCMs in reproducing spatial climatology of precipitation over the coastal area in East Asia (CMIP5 GCM의 동아시아 해안지역에 대한 공간적 강우특성 재현성 평가)

  • Hwang, Syewoon;Cho, Jeapil;Park, Chanwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.360-360
    • /
    • 2018
  • 기후변화에 따른 강우특성의 변화는 다양한 기상이변과 극한사상의 발현으로 사회적 관심이 높아지고 있는 이슈이다. 일반적인 기후변화 연구는 전지구 기후 모델 (GCM, General Circulation Model) 산출물에 기반하여 생산된 미래 기상정보를 바탕으로 이루어진다. 최근 국내 연구에서 주로 활용되는 자료는 IPCC 5차보고서(AR5)의 과학적 기반자료로 활용되는 CMIP5(Coupled Model Intercomparison Project, phase 5) GCM 산출물이다. 수자원, 농업, 경제의 다양한 분야에서 기후변화 영향평가가 심층적으로 이루어지고 있는 가운데 미래기간에 대한 GCM 산출물에 대한 신뢰성에 대한 평가 연구는 상대적으로 미흡한 실정이다. 모델의 신뢰성은 산출물의 실제 현상에 대한 재현성을 평가함으로서 가늠할 수 있다. 본 연구에서는 한반도 지역에 대한 전지구 모델의 성능을 평가하기 위해 동아시아 지역의 격자단위 관측자료를 수집하여 과거기간(1970~2005)에 대한 강우특성 공간분포를 분석하고 이에 대한 GCM 산출물의 재현성을 평가하였다. 위도와 경도에 따른 강우특성의 공간적 변동성에 대한 GCM 결과의 상관성과 평균/절대오차를 산정하여 29개 CMIP5 GCM의 순위를 결정하여 제시하였다. 이 분석은 동아시아 해안지역과 한반도 지역을 구분하고 다양한 강우특성에 대한 재현성을 통합적으로 고려하여 이루어졌다. 연구 결과 오차 통계와 대상지역에 따라 GCM 순위가 상이하게 나타났으며 특히 공간분포의 패턴과 절대적 오차를 기준으로 판단한 GCM 순위가 크게 다르게 나타났다. 대체로 Hadley Centre 계열 모델의 동아시아 지역에 대한 강우특성 재현성이 높게 나타났으며 한반도 지역만을 대상으로 평가했을 때 MPI_ESM_MR과 CMCC center 계열 모델의 재현성이 높게 나타났다. 본 연구결과는 향후 한반도 지역의 기후변화 영향평가에 가중있게 고려되어야 할 GCM의 선정과 GCM 성능고려에 따른 기후변화 예측 불확실성 평가에 적용될 수 있으며 다양한 영향평가 연구결과의 신뢰도 제고에 기여할 것으로 기대된다.

  • PDF

Construction of Intensity-Duration-Frequency Curve Using a Spatial-Temporal Downscaling Approach of GCM (GCM의 시간적, 공간적 축소화기법 이용한 미래의 IDF곡선 생성)

  • Oh, Jin-Ho;Chung, Eun Sung;Lee, Kil Seong
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.175-175
    • /
    • 2011
  • IDF 곡선은 수리구조물의 설계에 이용되며 본 연구에서는 기후변화를 고려한 GCM의 시간적 공간적 축소화기법을 통하여 미래의 IDF 곡선을 생성하였다. GCM자료로는 HadCM3과 CGCM3의 지역주의와 경제발전을 지향하는 A2시나리오를 이용하였다. GCM자료에 대한 공간적인 축소화기법으로 다중회귀 모형인 SDSM(Statistical DownScaling Model)을 이용하여 2030년, 2050년, 2080년의 미래의 일강우 자료를 생성하였다. 이를 다시 시간적 축소화기법인 GEV분포를 이용한 Scaling-Invariance기법을 적용하여 시단위의 강우자료를 생성하였다. 이를 통해 최종적으로 HadCM3과 CGCM3에 대한 각각 미래의 IDF곡선을 생성하였다. CGCM3의 경우 지속적인 강우강도의 증가를 보였지만 HadCM3의 경우 2050년대 감소하다 2080년대 다시 증가하는 양상을 보였다. 또한 CGCM3의 경우 HadCM3의 경우보다 좀 더 높은 강우 강도를 보였다. 본 연구의 대상지역은 서울지역이며 생성된 자료의 신뢰성을 확보하기위하여 서울기상관측소의 1961년부터~2000년까지의 일단위 강우자료를 이용하여 검 보정을 수행하였다.

  • PDF

Assessment of Climate Change Impacts on Water Resources in the Gyeongan-cheon Watershed Using Multiple GCMs (다중 GCM 미래 기후자료를 이용한 경안천 유역의 수자원에 대한 기후변화 영향 평가)

  • Kim, Chul-Gyum;Cho, Jaepil;Kim, Hyeonjun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.119-126
    • /
    • 2020
  • This study analyzed the effects of future climate change on water resources in the Gyeongan-cheon watershed of the Han River. Considering the uncertainties of GCM climate data, future data using 16 GCMs and SQM downscaling method are used. And SWAT model was applied to simulate the hydrological changes from the past to the future. The maximum to minimum difference according to GCM for the future period (2010-2099) was about 1,500 mm of annual precipitation, 150 mm of evapotranspiration, 1,380 mm of runoff, and the deviation from the mean was -40 % to +60 % of precipitation, ±15 % of evapotranspiration, -60 % to +90 % of runoff, which means that the variability is very high according to GCM. The impacts of climate change over the three future periods showed that precipitation, evapotranspiration, and runoff were expected to increase gradually toward the far future (2070-2099), and would be relatively larger under the RCP 8.5 scenario. On a monthly basis, it was analyzed that precipitation and runoff increased in July to September, while the evapotranspiration decreased in July and August, and increased in September and October. The results of this study are expected to be helpful in understanding the future climate impacts of various GCM data and the uncertainties associated with GCMs.

Selection of Representative GCM Based on Performance Indices (성능지표 기반 대표 GCM 선정)

  • Song, Young Hoon;Chung, Eun Sung;Mang, Ngun Za Luai
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.101-101
    • /
    • 2019
  • 전 지구적 기온상승으로 인한 기후변화는 사회적, 수문학적, 다양한 분야에 영향을 미친다. 또한 IPCC(Intergovernmental Panel on Climate Change)의 보고서에 따르면 미래에도 지속적으로 기온상승이 예상되며, 이러한 현상은 인류의 삶에 큰 영향을 미칠것으로 예상된다. 또한 수자원 및 관련 분야에서도 기온 상승에 따른 강수량, 강수의 주기 변동, 극한 기후사상의 심도(severity)와 빈도 변화에 따른 다양한 연구가 진행되고 있으며, 미래의 강우량과 온도를 예측하는 기후변화연구에서는 다양한 기후모형을 고려하여 분석한다. 하지만 모든 기후모형이 우리나라에 적합한 것은 아니므로 과거 기후를 모의한 결과를 토대로 성능이 뛰어난 모형의 결과에 더 높은 가중치를 주고 미래를 예측하는 연구가 활발히 진행되고 있다. 일반적으로 기후모형으로 GCM (General Circulation Model) 모의 결과가 이용되는데 우리나라에 대한 GCM 결과의 정확성을 분석하는 연구는 부족한 실정이다. 따라서 본 연구에서는 21개의 GCM을 대상으로 과거 모의 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량과 비교하여 각 GCM들의 성능을 평가하고 이를 토대로, GCM들의 우선순위를 선정하였다. 또한 격자 기반 GCM 결과를 IDW (Inverse Distance Weighted) 방법을 사용하여 기상관측소로 지역적 상세화를 수행하였으며, GCM과 관측자료 사이의 편이를 보정하기 위해 6가지의 Quantile Mapping 방법과 Random Forest 기법을 사용하였다. 또한 편이 보정 기법 중 성능이 좋은 기법을 선택하여 관측소에 적용하였다. 편이 보정된 GCM 모의결과에 대한 성능을 토대로 우수한 GCM 순위를 도출하기 위해 다기준의사결정기법 중 하나인 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)를 이용하였다. 그리고 GCM의 전망기간인 2010년부터 2018년까지의 Machine learning 방법과 Quantile mapping의 기법을 비교 및 성능이 우수한 편이 보정 방법을 선택한 후 전망기간 동안의 GCM 성능의 우선순위를 선정하였다.

  • PDF

Selection of Performance of Bias Correction using TOPSIS method (TOPSIS 방법을 이용한 편의 보정 방법 선정)

  • Song, Young Hoon;Chung, Eun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.306-306
    • /
    • 2019
  • 전지구적 기온상승으로 인해 미래기후의 관한 연구가 중요시 되고 있다. 위와 같은 현상으로 인하여 다양한 기후변화 연구가 진행되고 있다. 미래기후 연구에는 GCM (General Circulation Model) 모의 결과가 이용된다. 격자 자료로 구성된 GCM은 연구 지점으로 지역적 상세화와 연구지역의 관측자료 사이의 편이 보정(bias correction)이 필수적이다. 위와 같은 근거로 편이 보정 방법의 선택은 매우 중요하며 편의 보정의 방법에 따라서 결과가 다르게 도출될 수 있다. 또한 국내외 연구에서는 다양한 상세화 기법과 편이 보정 기법을 분석 및 평가하는 연구가 진행되고 있으며, 편의 기법 중 대표적인 기법인 Quantile mapping과 Random Forest 기법이 있다. Quantile mapping 기법은 GCM의 과거 모의 데이터와의 편이 보정에 있어서 우수하게 나타났으나, GCM 데이터의 미래 예측 기간(2010년~2018년)까지의 데이터에서는 극한 강수를 정량적으로 분석 가능한 Random Forest 기법이 편이 보정 과정에서 성능이 우수할 것으로 판단된다. 본 연구에서는 우리나라 21개 관측소를 기준으로 총 4개의 GCM(GISS, CSIRO, CCSM4,MIROC5)의 과거 기간 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량을 편의 보정하는 방법에 있어서 편의 보정 기법의 성능을 비교한 결과와 GCM 미래 예측 기간 자료(2010년~2018년)에서의 편의 보정 기법의 성능 결과를 비교하였다. 이를 토대로 편이 보정 기법의 결과를 6개의 평가지수를 이용하여 정량적으로 분석하였으며, 다기준의사결정기법인 TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)를 이용하여 편이 보정기법들의 성능에 있어서 우선순위를 선정하였다. 본 연구에서 편이 보정 방법으로 Quantile mapping 방법을 사용했으며, Quantile mapping의 기법으로는 비모수 변환법(non-parametric transformation)과 분포기반 변환법(distribution derived transformation)이 사용되었다. 또한 머신러닝 방법 중 하나인 Random Forest 방법을 동시에 사용하여 결과를 비교하였다. 또한 GCM 자료가 격자식으로 제공하고 있기 때문에 관측소 강수량도 공간적으로 환산하여야 하는데, 본 연구에서는 역거리 가중치법(inverse distance weighting, IDW) 방법을 이용하였다.

  • PDF

Evaluation of impact of climate change on inflow to Chungju Dam by user-centered selection of GCM and downscaling method (사용자 중심의 GCM 및 상세화 기법 선정에 따른 충주댐 유입량 기후변화 영향 평가)

  • Cho, Jaepil;Kim, Chul-gyum;Park, Ji-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.25-25
    • /
    • 2018
  • 본 연구는 충주댐을 대상으로 기후변화에 따른 미래 댐운영에 미치는 영향을 평가하기 위하여 연구 목적에 접합한 GCM 및 상세화 기법 선정을 위한 절차를 적용함으로써 사용자 중심의 기후변화 시나리오 상세화 자료가 유입량의 재현성 평가에 미치는 영향을 분석하였다. 우선 편이보정 전의 29개 원시 GCM에 대한 강수량 및 기온의 순단위 시 공간적 재현성 평가를 통해서 상위 16개 GCM을 선정하였다. 이후 상세화 기법을 선정하기 위해서 유입량 전망에 중요하다고 판단되는 총강수량(prcptot) 및 일최대강수량 (rx1day)을 기후지수(Climate Indices)로 선정하였다. 상세화 기법은 과거기간의 재현성이 평가, 미래기간 시그널 왜곡도 평가, 공간상관성에 대한 재현성 평가를 통해 SQM 기법을 선정하였다. 제한적인 기후변화 전망 자료를 고려하여 과거 30년 기간에 대한 모의결과 월단위 모형효율지수(ME) 및 결정계수 ($R^2$)는 모두 0.92로 만족할 만한 결과를 보여 주었다. GCM 선정에 따른 오차는 원시 GCM을 통해 선정된 16개 GCM을 사용한 경우 유입량 재현성 평가에 있어 가장 좋은 결과를 보였다. 전체적으로 상세화 자료를 유역 모델링에 활용하는 경우 GCM의 선정보다는 상세화 기법의 선정이 전체적인 재현성 평가에 있어서 중요한 것으로 나타났다. 미래기간에 대한 평균 유입량 전망은 모든 RCP 시나리오에서 근 미래 보다는 중간 및 먼 미래 기간 동안에 유입량이 증가하는 경향을 보였다. 또한 모든 미래 기간에 대해여 RCP 8.5 시나리오가 RCP 4.5 시나리오와 비교하여 유입량의 증가가 높을 것으로 전망되었다. 홍수 관리측면에서 중요한 일 최대 유입량의 미래 변동은 평균 유입량과 비교하여 최대 두 배 이상의 높은 변화율을 보였다. 댐운영 측면에서는 연간 총 유입량의 변화보다 시기별 유입량의 변동 특성을 이해하는 것이 중요하며, 평균 유입량 및 일단위 최대 유입량 모두 근 미래 기간에 대해서는 RCP 시나리오 모두 7월 및 8월을 중심으로 유입량이 증가하는 경향을 보였다. 반면 중간 미래에서 먼 미래로 갈수록 평균 및 일단위 최대 유입량 모두 전체 기간에 걸쳐 증가하는 경향을 보였다.

  • PDF

Uncertainty Analysis of GCM Information in Korea Using Probabilistic Diagnostics (국내 유역에 대한 GCM 정보의 확률론적 불확실성 분석)

  • Jeong, Chang-Sam;Heo, Jun-Haeng;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.173-184
    • /
    • 2004
  • The objective of this study is to examine the usefulness of climate model simulations (GCM) in Korea water resource management. The methods are based on probabilistic measures of the effectiveness of GCM simulations of an indicator variable for discriminating high versus low regional observations of a target variable. The formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. AMIP-II(Atmospheric Model Intercomparison Project-II) type GCM simulation done by ECMWF(European Centre for Medium-Range Weather Forecasts) was used for indicator variable and observed mean average precipitation(MAP) values on 7 major river basins were used as target variable. Monte Carlo simulation is used to establish the significance of the estimator values. The results show that GCM simulations done by ECMWF are skillful in discriminating the high from the low of the observed MAP for wet season in all seven basins of Korea, but not enough for dry season.

Flood damage cost projection in Korea using 26 GCM outputs (26 GCM 결과를 이용한 미래 홍수피해액 예측)

  • Kim, Myojeong;Kim, Gwangseob
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1149-1159
    • /
    • 2018
  • This study aims to predict the future flood damage cost of 113 middle range watersheds using 26 GCM outputs, hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount, DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity and previous flood damage costs. A constrained multiple linear regression model was used to construct the relationships between the flood damage cost and other variables. Future flood damage costs were estimated for different RCP scenarios such as 4.5 and 8.5. Results demonstrated that rainfall related factors such as annual rainfall amount, rainfall extremes etc. widely increase. It causes nationwide future flood damage cost increase. Especially the flood damage cost for Eastern part watersheds of Kangwondo and Namgang dam area may mainly increase.

Development of Poisson cluster generation model considering the climate change effects (기후변화 영향을 고려한 포아송 클러스터 가상강우생성모형 개발 및 검증)

  • Park, Hyunjin;Han, Jaemoon;Kim, Jongho;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.189-189
    • /
    • 2015
  • 본 연구는 기후변화의 영향을 고려한 포아송 강우생성모형의 일종인 MBLRP(Modified Bartlett-Lewis Rectangular Pulse)를 개발하고, 대한민국 주요 도시에 대해 향후 100년간 강우의 변화를 살펴보았다. 기존 MBLRP 모형에서 기후변화에 따른 강우량 변화를 고려할 수 있도록 GCM 모형의 강우 자료를 활용하였고, GCM 모형으로부터 발생하는 불확실성을 고려하기 위해 IPCC의 RCP(Representative Concentration Pathways) 시나리오를 모의한 16개의 GCM 모형을 사용하였다. 2007년부터 2099년까지의 미래기간을 3개의 시 구간으로 구분하고, 16개 GCM 앙상블을 사용하여 미래기간 동안 대한민국 16개 도시에 대해 1000개의 샘플을 BWA 방법을 이용하여 생성하였다. 제어기간(1973-2005) 대비 미래기간(2007-2099)의 변화율을 나타내는 FOC(factor of change)와 온도의 연별 변화율을 나타내는 SF(scaling factor)의 개념을 결합하여 미래기간에 대한 CF(correction factor)를 산정하였다. 이때 CF는 16개 도시의 연 단위 강우량 변화 비율을 월별로 나타내며, 제어기간의 월 강우 관측치와 CF를 몬테카를로 모의를 실시하여 미래기간의 강우 시나리오를 산정한다. 이를 통해 월 평균 강우량 통계치를 연 단위로 얻을 수 있으며, 월 평균 강우량이 월 평균 분산, 무강우확률, 자기상관계수와 가지는 선형 관계를 통해 강우 통계치를 산출한다. 이와 같은 강우 통계치는 가상강우생성모형인 MBLRP 모형에 입력 자료로 활용되어 월 강우량을 시 단위의 강우 시계열 자료로 생성해낸다. 최종적으로 MBLRP 모형으로 산정된 시 단위 강우 시계열은 기후변화 영향을 고려한 GCMs 앙상블로 생성된 강우 시나리오를 기반으로 산출되기 때문에 향후 수자원 분석에 활용 가능할 것이라 기대된다.

  • PDF