• 제목/요약/키워드: GCM, downscaling

Search Result 70, Processing Time 0.032 seconds

Machine Learning of GCM Atmospheric Variables for Spatial Downscaling of Precipitation Data

  • Sunmin Kim;Masaharu Shibata;YasutoTachikawa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.26-26
    • /
    • 2023
  • General circulation models (GCMs) are widely used in hydrological prediction, however their coarse grids make them unsuitable for regional analysis, therefore a downscaling method is required to utilize them in hydrological assessment. As one of the downscaling methods, convolutional neural network (CNN)-based downscaling has been proposed in recent years. The aim of this study is to generate the process of dynamic downscaling using CNNs by applying GCM output as input and RCM output as label data output. Prediction accuracy is compared between different input datasets, and model structures. Several input datasets with key atmospheric variables such as precipitation, temperature, and humidity were tested with two different formats; one is two-dimensional data and the other one is three-dimensional data. And in the model structure, the hyperparameters were tested to check the effect on model accuracy. The results of the experiments on the input dataset showed that the accuracy was higher for the input dataset without precipitation than with precipitation. The results of the experiments on the model structure showed that substantially increasing the number of convolutions resulted in higher accuracy, however increasing the size of the receptive field did not necessarily lead to higher accuracy. Though further investigation is required for the application, this paper can contribute to the development of efficient downscaling method with CNNs.

  • PDF

Assessing Hydrologic Impacts of Climate Change in the Mankyung Watershed with Different GCM Spatial Downscaling Methods (GCM 공간상세화 방법별 기후변화에 따른 수문영향 평가 - 만경강 유역을 중심으로 -)

  • Kim, Dong-Hyeon;Jang, Taeil;Hwang, Syewoon;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.81-92
    • /
    • 2019
  • The objective of this study is to evaluate hydrologic impacts of climate change according to downscaling methods using the Soil and Water Assessment Tool (SWAT) model at watershed scale. We used the APCC Integrated Modeling Solution (AIMS) for assessing various General Circulation Models (GCMs) and downscaling methods. AIMS provides three downscaling methods: 1) BCSA (Bias-Correction & Stochastic Analogue), 2) Simple Quantile Mapping (SQM), 3) SDQDM (Spatial Disaggregation and Quantile Delta Mapping). To assess future hydrologic responses of climate change, we adopted three GCMs: CESM1-BGC for flood, MIROC-ESM for drought, and HadGEM2-AO for Korea Meteorological Administration (KMA) national standard scenario. Combined nine climate change scenarios were assessed by Expert Team on Climate Change Detection and Indices (ETCCDI). SWAT model was established at the Mankyung watershed and the applicability assessment was completed by performing calibration and validation from 2008 to 2017. Historical reproducibility results from BCSA, SQM, SDQDM of three GCMs show different patterns on annual precipitation, maximum temperature, and four selected ETCCDI. BCSA and SQM showed high historical reproducibility compared with the observed data, however SDQDM was underestimated, possibly due to the uncertainty of future climate data. Future hydrologic responses presented greater variability in SQM and relatively less variability in BCSA and SDQDM. This study implies that reasonable selection of GCMs and downscaling methods considering research objective is important and necessary to minimize uncertainty of climate change scenarios.

Outlook of Discharge for Dam Watershed Using RCM and SWAT Based on A1B Scenario (A1B시나리오 기반 RCM과 SWAT모형을 이용한 댐유역 유출량 전망)

  • Park, Jin-Hyeog;Kwon, Hyun-Han;Chae, Hyo-Sok;No, Sun-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.354-354
    • /
    • 2011
  • 금강유역에 대한 기후변화 영향을 기후모형 및 수자원영향평가모형을 통하여 정량적으로 분석하기 위하여 한반도 최적 GCM모형으로 기상청에서 제공하는 ECHO-G GCM모형과 역학적 다운스케일링 기법을 이용한 공간해상도 27km의 지역규모의 MM5 RCM모형을 이용하였다. A1B시나리오 기반으로 고해상도 기후변화 시나리오를 작성하여 분석기간을 2015년대(2001-2030), 2045년대(2031-2060), 2075년대(2061-2090)로 구분하여 미래 연평균강수량, 기온 등을 전망하였고, 과거 30년 자료의 100년빈도 강수량과 미래의 100년 빈도강수량의 변동성을 평가하였다. 기본적으로 GCM 및 RCM은 시공간적 스케일의 상이성으로 인해 수자원 영향 평가를 위한 자료로서 직접적인 이용은 현실적으로 곤란하다는 점에서 본 연구에서는 RCM 격자자료를 유역단위에서 강우관측소 지점 단위로 공간적 Downscaling을 실시하였으며 RCM 월자료에 대해서 일단위 자료로 시간적 Downscaling을 수행하여 기후모델로부터 발생하는 시공간적 스케일의 문제점을 극복하였다. 또한 유역단위의 상세수문시나리오를 생산하기 위해서 다지점 비정상성 Downscaling 기법을 활용하여 기존 일강수량 모의기법에서 간과 되었던 비정상성을 고려하여 미래 기후변화에 따른 강수사상의 변동성을 다양한 방법으로 검토하였다. 2001년~2006년 기간동안 SWAT모형을 이용하여 용담댐유역 용담댐 지점의 유입량과 SWAT의 최종방류부의 유량분석값을 비교한 결과 모의치와 실측치가 90.1% 일치하는 것으로 나타났고, 천천수위관측소 지점의 유량을 모형결과와 비교분석 한 결과에서도 91.3% 일치하는 것으로 나타났다. 한편, 대청댐 지점의 유입량과 SWAT의 최종방류부의 유량분석값을 비교한 결과 모의치와 실측치가 84.4% 일치하는 것으로 나타나 금강유역내 용담댐 및 대청댐을 대상으로 유출분석 검토 결과 적용성이 있음을 확인하였다. 기후변화 분석기간은 2011년부터 2090년까지 80년을 대상기간 으로 선정하였으며, 분석결과 2011~2020년 사이 유출량이 18%증가하는 것으로 전망되었다.

  • PDF

GCM Scenario Downcsaling Method using Multi-Artificial Neural Network and Stochastic Typhoon Model (다지점 인공신경망과 추계학적 태풍모의를 통한 GCM 시나리오 상세화기법)

  • Moon, Su-Jin;Kim, Jung-Joong;Kang, Boo-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.276-276
    • /
    • 2012
  • 일반적으로 기후변화영향에 관한 연구수행을 위해 전지구기후모형(GCM; Global Climate Model)이 사용되고 있다. 하지만 GCM은 공간해상도(Spatial resolution)가 거칠기 때문에 수문학 분야에서 주로 사용되는 유역규모의 지역적인 스케일특성과 물리적 특징을 표현하는데 한계가 있다. 또한 GCM 기후변수들 중 강수량의 경우 한반도 지역의 6월과 10월 사이에 연강수량의 67% 이상이 집중되는 계절성을 반영하지 못하고 있으며, 높은 불확실성을 보이고 있다. 본 연구에서는 GCM 기반의 다지점 인공신경망기법을 적용한 상세화(Downscaling)를 실시하였다. GCM의 24개 2D변수에 대한 주성분분석을 실시하여 신경망의 학습인자로 사용하였으며, 학습, 검증 및 예측기간은 각각 1981~1995년, 1996~2000년, 2011~2100년으로 A1B 시나리오를 대상으로 상세화를 실시하였다. 또한, 여름철 태풍사상을 모의하기 위한 Stochastic Typhoon Simulation기법과 Baseline과 Projection 사이의 강수량 보정을 위한 Dynamic Quantile Mapping 기법을 적용하여, 강수량의 불확실성을 최소화 하고자 하였다.

  • PDF

Prediction of Climate-induced Water Temperature using Nonlinear Air-water Temperature Relationship for Aquatic Environments (지구기후모형 기온변화에 따른 미래 하천생태환경에서의 수온 예측)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.877-888
    • /
    • 2016
  • To project the effects of climate-induced change on aquatic environments, it is necessary to determine the thermal constraints affecting different fish species and to acquire time series of the current and projected water temperature (WT). Assuming that a nonlinear regression between the WT at individual stations and the ambient air temperature (AT) at nearby weather stations could represent the best relationship of air-water temperature, This study estimates future WT using a general circulation model (GCM). In addition, assuming that the grid-averaged observations of AT correspond to the AT output from GCM simulation, this study constructed a regression curve between the observations of the local WT and the concurrent GCM-simulated surface AT. Because of its low spatial resolution, downscaling is unavoidable. The projected WT under global warming scenario A2 (B2) shows an increase of about $1.6^{\circ}C$ ($0.9^{\circ}C$) for the period 2080-2100. The maximum/minimum WT shows an amount of change similar to that of the mean values. This study will provide guidelines for decision-makers and engineers in climate-induced river environment and ecosystem management.

Impact Assessment of Climate Change on Hydrologic Components and Water Resources in Watershed (기후변화에 따른 유역의 수문요소 및 수자원 영향평가)

  • Kim Byung Sik;Kim Hung Soo;Seoh Byung Ha;Kim Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.143-148
    • /
    • 2005
  • The main purpose of this study is to suggest and evaluate an operational method for assessing the potential impact of climate change on hydrologic components and water resources of regional scale river basins. The method, which uses large scale climate change information provided by a state of the art general circulation model(GCM) comprises a statistical downscaling approach and a spatially distributed hydrological model applied to a river basin located in Korea. First, we construct global climate change scenarios using the YONU GCM control run and transient experiments, then transform the YONU GCM grid-box predictions with coarse resolution of climate change into the site-specific values by statistical downscaling techniques. The values are used to modify the parameters of the stochastic weather generator model for the simulation of the site-specific daily weather time series. The weather series fed into a semi-distributed hydrological model called SLURP to simulate the streamflows associated with other water resources for the condition of $2CO_2$. This approach is applied to the Yongdam dam basin in southern part of Korea. The results show that under the condition of $2CO_2$, about $7.6\% of annual mean streamflow is reduced when it is compared with the observed one. And while Seasonal streamflows in the winter and autumn are increased, a streamflow in the summer is decreased. However, the seasonality of the simulated series is similar to the observed pattern and the analysis of the duration cure shows the mean of averaged low flow is increased while the averaged wet and normal flow are decreased for the climate change.

  • PDF

Quantification of future climate uncertainty over South Korea using eather generator and GCM

  • Tanveer, Muhammad Ejaz;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

  • PDF

Spatiotemporal distribution of downscaled hourly precipitation for RCP scenarios over South Korea and its hydrological responses

  • Lee, Taesam;Park, Taewoong;Park, Jaenyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.247-247
    • /
    • 2015
  • Global Climate Model (GCM) is too coarse to apply at a basin scale. The spatial downcsaling is needed to used to permit the assessment of the hydrological changes of a basin. Furthermore, temporal downscaling is required to obtain hourly precipitation to analyze a small or medium basin because only few or several hours are used to determine the peak flows after it rains. In the current study, the spariotemporal distribution of downscaled hourly precipitation for RCP4.5 and RCP8.5 scenarios over South Korea is presented as well as its implications over hydrologica responses. Mean hourly precipitation significantly increases over the southern part of South Korea, especially during the morning time, and its increase becomes lower at later times of day in the RCP8.5 scenario. However, this increase cannot be propagated to the mainland due to the mountainous areas in the southern part of the country. Furthermore, the hydrological responses employing a distributed rainfall-runoff model show that there is a significant increase in the peak flow for the RCP8.5 scenario with a slight decrease for the RCP4.5 scenario. The current study concludes that the employed temporal downscaling method is suitable for obtaining the hourly precipitation data from daily GCM scenarios. In addition, the rainfall runoff simulation through the downscaled hourly precipitation is useful for investigating variations in the hydrological responses as related to future scenarios.

  • PDF

An Analysis of the Effect of Climate Change on Nakdong River Flow Condition using CGCM ' s Future Climate Information (CGCM의 미래 기후 정보를 이용한 기후변화가 낙동강 유역 유황에 미치는 영향분석)

  • Keem, Munsung;Ko, Ikwhan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.863-871
    • /
    • 2009
  • For the assessment of climate change impacts on river flow condition, CGCM 3.1 T63 is selected as future climate information. The projections come from CGCM used to simulate the GHG emission scenario known as A2. Air temperature and precipitation information from the GCM simulations are converted to regional scale data using the statistical downscaling method known as MSPG. Downscaled climate data from GCM are then used as the input data for the modified TANK model to generate regional runoff estimates for 44 river locations in Nakdong river basin. Climate change is expected to reduce the reliability of water supplies in the period of 2021~2030. In the period of 2051~2060, stream flow is expected to be reduced in spring season and increased in summer season. However, it should be noted that there are a lot of uncertainties in such multiple-step analysis used to convert climate information from GCM-based future climate projections into hydrologic information.