• Title/Summary/Keyword: GCM, downscaling

Search Result 70, Processing Time 0.028 seconds

Reliability Analysis of the GCM Data Downscaling Methods for the Climate-Induced Future Air Temperature Changes in the Coastal Zone (연안 해역의 미래 기온변화 예측을 위한 GCM 자료 Downscaling 기법의 신뢰수준 분석)

  • Lee, Khil-Ha;Cho, Hong-Yeon;Cho, Beom-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-41
    • /
    • 2008
  • Future impact of anthropogenic climate-induced change on ecological regime has been an issue and information on water temperature is required for estimating coastal aquatic environment. One way to induce water temperature is to relate water temperature to air temperature and GCM is able to provide future air temperature data to do this. However, GCM data of low spatial resolution doesn't incorporate local or sitespecific air temperature in need of application, and downscaling processes are essential. In this study, a linear regression is used to relate nationally averaged air temperature to local area for the time period of 2000-2005. The RMSE for calibration (2000-2005) is 1.584, while the RMSE for validation is 1.675 for the year 2006 and 1.448 for the year 2007. The NSC for calibration (2000-2005) is 0.962, while the NSC for validation is 0.955 for the year 2006 and 0.963 for the year 2007. The results show that the linear regression is a good tool to relate local air temperature to nationally averaged air temperature with $1.0{\sim}2.0^{\circ}C$ of RMSE. The study will contribute to estimate future impact of climate-induced change on aquatic environment in Korean coastal zone.

Some issues on the downscaling of global climate simulations to regional scales

  • Jang, Suhyung;Hwang, Manha;Hur, Youngteck;Kavvas, M. Levent
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.229-229
    • /
    • 2015
  • Downscaling is a fundamental procedure in the assessment of the future climate change impact at regional and watershed scales. Hence, it is important to investigate the spatial variability of the climate conditions that are constructed by various downscaling methods in order to assess whether each method can model the climate conditions at various spatial scales properly. This study introduces a fundamental research from Jang and Kavvas(2015) that precipitation variability from a popular statistical downscaling method (BCSD) and a dynamical downscaling method (MM5) that is based on the NCAR/NCEP reanalysis data for a historical period and on the CCSM3 GCM A1B emission scenario simulations for a projection period, is investigated by means of some spatial characteristics: a) the normalized standard deviation (NSD), and b) the precipitation change over Northern California region. From the results of this study it is found that the BCSD method has limitations in projecting future precipitation values since the BCSD-projected precipitation, being based on the interpolated change factors from GCM projected precipitation, does not consider the interactions between GCM outputs and local geomorphological characteristics such as orographic effects and land use/cover patterns. As such, it is not clear whether the popular BCSD method is suitable for the assessment of the impact of future climate change at regional, watershed and local scales as the future climate will evolve in time and space as a nonlinear system with land-atmosphere feedbacks. However, it is noted that in this study only the BCSD procedure for the statistical downscaling method has been investigated, and the results by other statistical downscaling methods might be different.

  • PDF

Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique (GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가)

  • Kim, Chul Gyum;Park, Jihoon;Cho, Jaepil
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

Construction of Basin Scale Climate Change Scenarios by the Transfer Function and Stochastic Weather Generation Models (전이함수모형과 일기 발생모형을 이용한 유역규모 기후변화시나리오의 작성)

  • Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.345-363
    • /
    • 2003
  • From the General Circulation Models(GCMs), it is known that the increases of concentrations of greenhouse gases will have significant implications for climate change in global and regional scales. The GCM has an uncertainty in analyzing the meteorologic processes at individual sites and so the 'downscaling' techniques are used to bridge the spatial and temporal resolution gaps between what, at present, climate modellers can provide and what impact assessors require. This paper describes a method for assessing local climate change impacts using a robust statistical downscaling technique. The method facilitates the rapid development of multiple, low-cost, single-site scenarios of daily surface weather variables under current and future regional climate forcing. The construction of climate change scenarios based on spatial regression(transfer function) downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translates the GCM grid-box predictions with coarse resolution of climate change to site-specific values and the values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather values. In this study, the global climate change scenarios are constructed using the YONU GCM control run and transient experiments.

Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble (다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발)

  • Kim, Tae-Jeong;Kim, Ki-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.327-340
    • /
    • 2015
  • General Circulation Models (GCMs) are the basic tool used for modelling climate. However, the spatio-temporal discrepancy between GCM and observed value, therefore, the models deliver output that are generally required calibration for applied studies. Which is generally done by Multi-Model Ensemble (MME) approach. Stochastic downscaling methods have been used extensively to generate long-term weather sequences from finite observed records. A primary objective of this study is to develop a forecasting scheme which is able to make use of a MME of different GCMs. This study employed a Nonstationary Hidden Markov Chain Model (NHMM) as a main tool for downscaling seasonal ensemble forecasts over 3 month period, providing daily forecasts. Our results showed that the proposed downscaling scheme can provide the skillful forecasts as inputs for hydrologic modeling, which in turn may improve water resources management. An application to the Nakdong watershed in South Korea illustrates how the proposed approach can lead to potentially reliable information for water resources management.

Projection and Analysis of Future Temperature and Precipitation using LARS-WG Downscaling Technique - For 8 Meteorological Stations of South Korea - (LARS-WG 상세화 기법을 적용한 미래 기온 및 강수량 전망 및 분석 - 우리나라 8개 기상관측소를 대상으로 -)

  • Shin, Hyung-Jin;Park, Min-Ji;Joh, Hyung-Kyung;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.83-91
    • /
    • 2010
  • Generally, the GCM (General Circulation Model) data by IPCC climate change scenarios are used for future weather prediction. IPCC GCM models predict well for the continental scale, but is not good for the regional scale. This paper tried to generate future temperature and precipitation of 8 scattered meteorological stations in South Korea by using the MIROC3.2 hires GCM data and applying LARS-WG downscaling method. The MIROC3.2 A1B scenario data were adopted because it has the similar pattern comparing with the observed data (1977-2006) among the scenarios. The results showed that both the future precipitation and temperature increased. The 2080s annual temperature increased $3.8{\sim}5.0^{\circ}C$. Especially the future temperature increased up to $4.5{\sim}7.8^{\circ}C$ in winter period (December-February). The future annual precipitation of 2020s, 2050s, and 2080s increased 17.5 %, 27.5 %, and 39.0 % respectively. From the trend analysis for the future projected results, the above middle region of South Korea showed a statistical significance for winter precipitation and south region for summer rainfall.

Development of Multi-Ensemble GCMs Based Spatio-Temporal Downscaling Scheme for Short-term Prediction (여름강수량의 단기예측을 위한 Multi-Ensemble GCMs 기반 시공간적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1142-1146
    • /
    • 2009
  • A rainfall simulation and forecasting technique that can generate daily rainfall sequences conditional on multi-model ensemble GCMs is developed and applied to data in Korea for the major rainy season. The GCM forecasts are provided by APEC climate center. A Weather State Based Downscaling Model (WSDM) is used to map teleconnections from ocean-atmosphere data or key state variables from numerical integrations of Ocean-Atmosphere General Circulation Models to simulate daily sequences at multiple rain gauges. The method presented is general and is applied to the wet season which is JJA(June-July-August) data in Korea. The sequences of weather states identified by the EM algorithm are shown to correspond to dominant synoptic-scale features of rainfall generating mechanisms. Application of the methodology to seasonal rainfall forecasts using empirical teleconnections and GCM derived climate forecast are discussed.

  • PDF

Development of Stochastic Downscaling Method for Rainfall Data Using GCM (GCM Ensemble을 활용한 추계학적 강우자료 상세화 기법 개발)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Lee, Dong-Ryul;Yoon, Sun-Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.825-838
    • /
    • 2014
  • The stationary Markov chain model has been widely used as a daily rainfall simulation model. A main assumption of the stationary Markov model is that statistical characteristics do not change over time and do not have any trends. In other words, the stationary Markov chain model for daily rainfall simulation essentially can not incorporate any changes in mean or variance into the model. Here we develop a Non-stationary hidden Markov chain model (NHMM) based stochastic downscaling scheme for simulating the daily rainfall sequences, using general circulation models (GCMs) as inputs. It has been acknowledged that GCMs perform well with respect to annual and seasonal variation at large spatial scale and they stand as one of the primary sources for obtaining forecasts. The proposed model is applied to daily rainfall series at three stations in Nakdong watershed. The model showed a better performance in reproducing most of the statistics associated with daily and seasonal rainfall. In particular, the proposed model provided a significant improvement in reproducing the extremes. It was confirmed that the proposed model could be used as a downscaling model for the purpose of generating plausible daily rainfall scenarios if elaborate GCM forecasts can used as a predictor. Also, the proposed NHMM model can be applied to climate change studies if GCM based climate change scenarios are used as inputs.

A Study on Downscaling of GCM output using Artificail Neural Network in Soyang River Basin (인공신경망 모델을 이용한 소양강 유역의 GCM 모의결과 상세화 기법에 대한 연구)

  • Lee, Kyoung-Joo;Sung, Kyung-Min;Kim, Soo-Young;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.847-850
    • /
    • 2010
  • 최근 많은 수문학자들은 전지구적 기후변화로 인한 피해 예방과 저감을 위해 기후변화가 수문학적으로 어떤 영향을 미치고 있는지 알기 위해 많은 연구를 진행하고 있으며, 기후변화시나리오를 작성하고자 이산화탄소 배출농도를 가정하여 다양한 시나리오를 생성하고 있다. 본 연구에서는 효율적인 수자원 관리를 위해 저해상도의 GCM(General Circulation Models) 모형에서 생성되는 모의결과를 유역 규모의 단위로 스케일 상세화 기법(downscaling)을 적용 시켜 보고자 한다. 이를 위해 2007년 IPCC AR4와 함께 제시된 SRES A1B 시나리오를 채택하여 우리나라 기상청이 연구에 참여 제공하고 있는 EHCO-G 모델의 모의결과를 이용하여 소양강 유역에 적용하였다. 상세화 기법으로는 현재와 과거의 입력값들과 이에 대응된 출력값들을 알고 있는 경우에 미래의 새로운 입력값들에 대한 예측값들을 추출하는데 유용하며, 비선형적 비연속적인 특성이 강한 모델에 강점을 가지고 있는 인공신경망(Artificial Neural Network) 모델을 사용하고자 한다.

  • PDF