• Title/Summary/Keyword: GCIUH(Geomorphoclimatic Instantaneous Unit Hydrograph)

Search Result 4, Processing Time 0.016 seconds

Determining the Flash Flood Warning Trigger Rainfall using GIS (GIS를 활용한 돌발홍수 기준우량 결정)

  • Hwang, Chang-Sup;Jun, Kye-Won;Yeon, In-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.78-88
    • /
    • 2006
  • This paper is to apply Geographical Information System (GIS) supported Geomorphoclimatic Instantaneous Unit Hydrograph (GCIUH) approach for the calculated flash flood trigger rainfall of the mountainous area. GIS techniques was applied in geography data construction such as average slope, drainage area, channel characteristics. Especially, decided stream order using GIS at stream order decision that is important for input variable of GCIUH. We compared the GCIUH peak discharge with the existing report using the design storm at Chundong basin($14.58km^2$). The results showed that derived the GCIUH was a very proper method in the calculation of mountaunous discharge. At the Chundong basin, flash flood trigger rainfall was 12.57mm in the first 20 minutes when the threshold discharge was $11.42m^3/sec$.

  • PDF

Real-Time Flash Flood Evaluation by GIS Module at Mountainous Area (산악에서 돌발홍수예측을 위한 지리정보시스템의 적용)

  • Nam, Kwang-Woo;Choi, Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.317-327
    • /
    • 2005
  • The flood is the most general and frequently occurs among natural disasters. Generally flood by the rainfall which extends superexcellently for the occurrence but flash flood from severe rain storm gets up an absurd drowsiness at grade hour. This paper aims to 1 hour real-time flash flood and predict possibility at the area where is the possible flood will occur from the rainfall hour mountain after acquiring data in GIS(Geographic Information System) base by GcIUH(Geomorphoclimatic Instantaneous Unit Hydrograph). The flash flood occurrence is set up at 0.5m, 0.7m and 1.0m in standard depth. And this study suggests standard flood alarm which designed by probable flood according to duration time. The research result shows real-time flash flood evaluation has the suitable standard in the basin when comparing with the existing official warning announcement system considering topographical information.

A Study on Flash Flood Warning Trigger Rainfall in Mountainous Area (산악지역 돌발홍수 기준우량 결정에 관한 연구)

  • Jun, Kye-Won;Oh, Chae-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.89-94
    • /
    • 2009
  • The purpose of this study is to estimate the critical flood discharge and flash flood trigger rainfall for alarm system providing for a flash flood in mountainous area. The flash flood need non-linear approaching method, because rainfall-runoff is nonlinear and it is difficult to explain the existing linear rainfall-runoff. Hydrological characteristics would be utilized to apply such as hydrologic modelling or basin management. This study was effectively estimated a topographic characteristic factor of basin using the GIS. Especially, decided stream order using GIS at stream order decision that is important for input variable of GCIUH. A flash floods defined as a flood which follows shortly after a heavy or excessive rainfall event, with a few hours. In this study, we gave a definition that a critical flood for alarm is the flood when valley depth judging dangerous depth is over 0.5m depth from the bottom of channel. Result that calculate threshold discharge to use GCIUH, at the Mureung valley basin, flash flood trigger rainfall was 16.34mm in the first 20minutes when the threshold discharge was $14.54m^3/sec$.

An Analysis for Goodness of Fit on Trigger Runoff of Flash Flood and Topographic Parameters Using GIS (GIS를 이용한 돌발홍수의 한계유량과 유역특성인자의 적합도 분석)

  • Oh, Myung-Jin;Yang, In-Tae;Park, Byung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.87-95
    • /
    • 2006
  • Recently, local heavy rain for a short term is caused by unusual changing in the weather. This phenomenon has, several times, caused an extensive flash flood, casualties, and material damage. This study is aimed at calculating the characteristics of flash floods in streams. For this purpose, the analysis of topographical characteristics of water basin through applying GIS techniques will be conducted. The flash flood prediction model we used is made with GCIUH (geomorphoclimatic instantaneous unit hydrograph). The database is established by the use of GIS and by the extraction of streams and watersheds from DEM. The streams studied are included small, middle and large scale watersheds. For the first, for the establishment or criteria on the flash flood warning, peak discharge and trigger runoff must be decided. This study analyzed the degree or aptitude of topographical factors to the trigger runoff calculated by GCUH model.

  • PDF