• Title/Summary/Keyword: GC-determination

Search Result 478, Processing Time 0.031 seconds

Determination of Aroma Components in Pinus densiflora (Pine Needles) Studied by Using Different Extraction Methods (추출방법에 따른 솔잎의 휘발성 성분 조성 비교)

  • Lee Jae-Gon;Lee Chang-Gook;Baek Shin;Kwon Young-Ju;Jang Hee-Jin;Kwag Jae-Jin;Rhee Moon-Soo;Lee Gae-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • The efficiency of six different extraction methods for the analysis of aroma components from pine needle(P. densiflora) was compared by gas chromatography-mass selective detector(GC-MSD). The six methods were dynamic headspace(DHS), reduced pressure headspace(RPHS), solid-phase microextraction(SPME), simultaneous distillation-extraction(SDE), supercritical fluid extraction(SFE) and pyrolysis distillation extraction(PDE). A total of 65 compounds were identified by using the six different extraction methods. These compounds are classified into six categories in terms of chemical functionality: 25 hydrocarbons, 16 alcohols, 9 carbonyls, 6 esters, 7 acids, and 2 ethers. The aroma compounds having low boiling point were more abundant in DHS, RPHS, and SPME extracts. On the other hand, the aroma compounds having high boiling point were more abundants in SDE, SFE and PDE extracts. The acid compounds were extracted by heat-based extraction methods such as SDE, SFE, PDE, but not by DHS, RPHS and SPME, which used neither solvent nor heat. The oxygenated terpens, hexanal, hexanol, and hexadienal were more abundant in DHS and RPHS extracts, compared with the other methods.

Analysis of 1,4-Dioxane and Chlorohydrins in Food Additives by Purge & Trap GC (퍼지앤트랩-기체크로마토그래피(PT-GC)를 이용한 식품첨가물 중 1,4-디옥산 및 클로로히드린류 분석)

  • 조태용;신영민;반경녀;오세동;이창희;이영자;문병우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.965-970
    • /
    • 2003
  • This study has been performed to develope a method for the simultaneous determination of 1,4-dioxane (DOX), epichlorohydrin (EPC), propylene chlorohydrin (PCH), ethylene chlorohydrin (ECH) and 1,3-dichloro-2-pro-panol (DCP) in polysorbates, chloline chloride, choline bitartrate, modified starch and spices by purge and trapgas chromatography. Experimental design was used to select a suitable trap by measuring the limit of detection (LOD) and to investigate the effect of temperature and salt of extraction, and the percentage of recovery in various matrix. The LOD of DOX, EPC, PCH, ECH and DCP were 1.38$\mu\textrm{g}$, 0.23$\mu\textrm{g}$, 3.30$\mu\textrm{g}$, 3.97$\mu\textrm{g}$, 20.43$\mu\textrm{g}$ respectively, by means of using Vorcarb 3000 trap with 5$0^{\circ}C$ sample sparger. Excluding EPC, the recoveries of target compounds were above 90% in all matrix. Target compounds in polysorbates (17), choline chloride (5), choline bitartrate (5), modified starch (8) and spices (25) were not detected. But 2.5 ppm of DOX was detected in Tween 80.

Bioequivalence of Two Nilvadipine Tablet (닐바디핀 정제에 대한 생물학적 동등성 평가)

  • 김종국;이사원;최한곤;고종호;이미경;김인숙
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.289-295
    • /
    • 1998
  • The bioequivalence of two nilvadipine products was evaluated in 16 normal male volunteers (age 22-32 yr, body weight 57-80 kg) following sidle oral dose. Test product was Overca $l_{R}$ tablet (Choong-Wae Pharm. Corp., Korea) and reference product was Nivadi $l_{R}$ tablet (Hyundai Pharm. Corp., Korea). Both products contain 4 mg of nilvadipine. One tablet of the test or the reference product was administered to the volunteers, respectively, by randomized two period cross-over study (2$\times$2 Latin square method). The determination of nilvadipine was accomplished using a validated capillary column GC with electron-capture detection. As a result of the assay validation, the quantiflcation of nilvadipine in human plasma by this technique was possible down to 0.5 ng/ml using 1 ml of plasma. Absolute overall recovery from five replicate analyses of nilvadipine-spiked sample were 88.4$\pm$ 10.24% (mean$\pm$ 5.D.) for human plasma of 10 ng/ml. The coefficients of variation (C.V.) were less than 20% and the actual concentration of nilvadipine measured by GC ranged from 80 to 99% in all plasma. Average drug concentrations at each sampling time and pharmacokinetic parameters calculated were not significantly different between two products (p>0.05); the area under the curve from time zero to 8 hr (AUCo-$_{8 hr}$) (22.8$\pm$5.90 vs 22.2$\pm$6.10 ng . hr/ml), maximum plasma concentration ( $C_{max}$) (10.0$\pm$2.85 vs 9.3$\pm$3.28 ng/ml) and time to reach maximum plasma concentration ( $T_{max}$) (1.2$\pm$0.31 vs 1.3 $\pm$0.47 hr). The differences of mean AU $Co_{8hr}$ $C_{max}$, and $T_{max}$ between the two products (2.25, 7.65, and 10.30%, respectively) were less than 20%. The power (1-$\beta$) and treaeent difference (7) for AU $Co_{8hr}$, and $C_{max}$ were more than 0.8 and less than 0.2, respectively. Although the power for Tmax was under 0.8, Tm\ulcorner of the two products was not significantly different from each other (p>0. 05). These results suggest that the bioavailability of Overeat tablet is not significantly different from that of Nivadil tablet. Therefore, two products are bioequivalent based on the current results.sults.lts.lts.lts.

  • PDF

Evaluation of soybean oil rancidity by pentanal and hexanal determination (Pentanal과 hexanal 측정에 의한 대두유의 산패도 측정)

  • Chun, Ho-Nam;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.149-153
    • /
    • 1991
  • Several commercial soybean oils were stored at $20^{\circ}C,\;40^{\circ}C$ and $60^{\circ}C$ with daily exposure of fluorescent light for 12 hours and evaluated their rancidity by headspace gas chromatographic analysis of pentanal and hexanal. The data of gas chromatographic analysis was compared with organoleptic flavor evaluation. For headspace gas chromatographic analysis, the volatile compounds were recovered by porous polymer trap and flushed into a fused silica capillary column at $250^{\circ}C$, The pentanal and hexanal separated were identified by gas chromatography and gas chromatography-mass spectrometric method. The results showed that the contents of pentanal and hexanal were linearly increased during storage for 100 days. A very simple linear relationship was found between organoleptic flavor scores and amounts of two volatile compounds with very high correlation coefficient. A similar linear relationship was also obtained for acid and peroxide value with sensory data. This results suggested the possible implication of pentanal and hexanal as an quality index for rancidity evaluation of soybean oil.

  • PDF

A study on the development of phthalate plasticizers CRM in ABS resin (ABS 중 phthalates 가소제 CRM 개발에 대한 연구)

  • Jung, Jung-Sul;Park, Jung-Woo;Yoo, Seok;Kweon, Seong-Il;Hong, Sung-Taeg;Sun, Yle-Shik;Park, Cheon-Min;Choi, Chang-Hyoo
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.273-283
    • /
    • 2012
  • Phthalate plasticizers are regulated by RoHS, REACH and CPSC as hazardous substances. Responding to these international environmental restrictions, we developed ABS certified reference material (CRM) for determination of phthalate plasticizers such as DMP, DEP, DBP, BBP, DEHP and DnOP. The candidate material has been made with ABS resin widely used in electric and electronic products and 6 kinds of phthalate plasticizers. The making of the material involved a series of processes like extruding, cooling, pelletizing, and drying using twin screw extruder. Then it has been certified according to ISO Guide 35. Using isotope dilution-gas chromatography/mass spectrometry (ID-GC/MS), homogeneity, short-term stability, and long-term stability were evaluated. The certified values were determined by using primary reference material (PRM) of KRISS for traceability. From now on, we will provide ABS CRM to national and international companies and research institutes after certification as certified reference material and registering on COMAR (code of reference material).

Determination of Gasoline Brands by the Comparison of Infrared Spectra of Polymeric Dispersants (청정분산제의 적외선 분광스펙트럼 비교를 통한 자동차용 휘발유 제조사의 판별)

  • Kim, Myeonghee;Jang, Youngsik;Jung, Chungseop;Lee, Hyunkee
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.469-473
    • /
    • 1998
  • The gasoline brands can be determined by gas chromatography. However, determining from the differences in chromatograms is sometimes ambiguous because the gasoline composition is becoming similar from refinery to refinery due to stringent regulations for the protection of the atmospheric environment. To determine the gasoline brands of five refineries in Korea, we have obtained and compared IR spectra of polymeric dispersants which are added to gasoline at several hundreds of ppm levels. Since the deposit control additives used by the five refineries in Korea are different from one another, it is possible to determine the gasoline brands by comparing their IR spectra. A strong and broad C-O stretch absorption peak appears at $1,096cm^{-1}$ for the additives used by A, B, and C refineries, which renders an easy differentiation of the additives from those of D and E refineries. The differentiation of all five gasoline brands are possible due to the characteristic vibrations present in each additive.

  • PDF

Determination of ethyl carbamate in maesil wine by alcohol content and ratio of maesil (Prunus mume) during ripening period (알코올 농도 및 담금비에 따른 숙성 기간별 매실주의 에틸카바메이트 함량조사)

  • Kim, Nan-Young;Eom, Mi-Na;Do, Young-Sook;Kim, Jung-Beom;Kang, Suk-Ho;Yoon, Mi-Hye;Lee, Jong-Bok
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.429-434
    • /
    • 2013
  • This study was designed to investigate the formation of ethyl carbamate (EC) during the ripening of Maesil with sugar and Soju (19.5~35% alcohol contents) using a homemade method. Maesil, sugar and Soju were purchased at ordinary market in June of 2012. The preparation of sample for analysis was conducted by method of Henry et al. The analysis of GC/MS was used SIM mode (m/z 89, 74, 62). Quantification was performed in terms of the 62 ion and was based on an internal standard procedure. Good linearity was obtained with a regression coefficient ($r^2$ = 0.993). Low detection limits (LOD) was achieved 4.31 ug/kg and recovery for alcohol was 74.8%. During 90 days, fermentation with sugar was not detected EC (under LOQ). 15 days ripened Maesil wine contained EC between non detected~32.7 ug/kg and 90 days ripened Maesil wine was 19.7~87.4 ug/kg. Higher proportion of Maesil and Soju increased EC contents. EC levels were increased 32.7 ug/kg to 87.4 ug/kg in the ratio of Maesil to 35% alcohol-Soju (1:1). In the ratio of Maesil to 35% alcohol-Soju (1:3) was increased non detected to 69.7 ug/kg. After 90 days, Maesil wine was filtered Maesil through a seive and ripened by 180 days to investigate the formation of EC compared with non filtered. Treatment of filtered, EC contents was much higher level compared with non filtered. Therefore, this result showed that alcohol contents contribute to increase EC formation more than Maesil.

Determination of Cholesterol, Fatty Acids and Polyaromatic Hydrocarbons in PM10 Particles Collected from Meat Charbroiling (고기구이 스모크에서 채취한 PM10입자에서 콜레스테롤, 지방산과 PAH의 분포)

  • Seo, Young-Hwa;Ko, Kwang-Youn;Jang, Young-Kee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.155-164
    • /
    • 2010
  • Emission from biomass combustion such as meat charbroiling is an important source of organic aerosol. Since source profiles are necessary input profiles for source apportionment of aerosol by a chemical mass balance model, meat cooking organic source profiles are developed by measuring organic marker compounds, including palmitic acid, stearic acid, oleic acid and cholesterol as well as PAH compounds. Emissions from meat and pork charbroiling are collected on quartz filters with a PM10-high volume sampler, extracted with organic solvents, derivatized with diazomethane/TMS and analyzed by GC/MS isotope dilution method. Organic and elemental carbon are also analyzed by an OCEC analyzer. Wt.% of cholesterol to the organic carbon(OC) content from beef and pork charbroiling is only 0.056 and 0.062, but wt. % of all saturated fatty acids to the OC content from beef and pork charbroiling is 2.727 and 2.022, and the wt% of all unsaturated fatty acids to the OC content is 0.278 and 0.438, respectively. Content of total PAH compounds to the OC content from beef charbroiling is higher than that from pork charbroiling, and those are 0.116 wt% and 0.044 wt%. Among PAH compounds benzo(a)pyrene as a single compound is account for 0.0071 wt% and 0.0023 wt% of OC content from beef and pork charbroiling. Ratios of marker compound to cholesterol are calculated, and those values are in good agreement with the values already reported at the food cooking emission, indicating that they can be used as organic source profiles for the apportionment of organic aerosol.

Identification of Irradiation -induced Volatile Marker Compounds in Irradiated Red Pepper Powder (방사선조사 고추가루로부터 휘발성 표지물질의 구명)

  • Kim, Hun;Ahn, Jun-Suck;Sin, Yeong-Min;Lee, Yong-Ja;Lee, Kyung-Hae;Byun, Myung-Woo;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • To develop a new detection method using irradiation-induced volatile marker compounds of red pepper powder (RP), the volatile compounds of irradiated RP (0, 1, 3, 5, and 10 kGy) were analyzed by purge and trap (P&T)/solid phase microextraction (SPME)/gas chromatography/mass spectrometry (GC/MS) methods. A total of 51 and 31 compounds were detected in IRP by SPME and P&T methods, respectively. Among these, 25 compounds, which were composed of 4 hydrocarbons, 7 aldehydes, 1 ketone, 3 alcohols, 4 aromatic compounds, 2 esters and 4 miscellaneous compounds, showed irradiation dependent manner with significant positive correlation (p<0.01 or p<0.05) between irradiation dose and relative concentration. However, all compounds except 1,3-bis(1,1-dimethylethyl)benzene were not suitable as marker compounds because of their low determination coefficients ($R^2$<0.80) between irradiation dose and their concentrations, and detectablilty in nonirradiated sample. Therefore, only one compound, 1,3-bis(1,1-dimethylethyl)benzene, was tentatively identified as a volatile marker compound to detect irradiated RP.

Evaluation of Freshness of Chicken Meat during Cold Storage Using a Portable Electronic Nose (휴대용 전자코를 이용한 계육의 냉장 중 신선도 평가)

  • Lee, Hoon-Soo;Chung, Chang-Ho;Kim, Ki-Bok;Cho, Byoung-Kwan
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.313-320
    • /
    • 2010
  • The purpose of this study was to evaluate the freshness of chicken meat during 19 d of storage at $4^{\circ}C$ using a portable electronic nose. The portable system consisted of six different metal oxide sensors and a moisture sensor. Determination of volatile compounds with gas chromatography-mass spectrometry, total bacterial count (TBC), and 2-thiobarbituric acid reactive substances (TBARS) monitored the quality change of the samples. These results were compared with the results measured by the electronic nose system. TBC and TBARS measurements could be separated into five groups and seven groups, respectively, among ten groups. According to principal component analysis and linear discriminant analysis with the signals of the portable electronic nose, the sample groups could be clearly separated into eight groups and nine groups, respectively, among ten groups. The portable electronic nose demonstrated potential for evaluating freshness of stored chicken.