• Title/Summary/Keyword: GC-SPME

Search Result 221, Processing Time 0.023 seconds

Determination of Volatile Organic Compounds (VOCs) in Drinking Water using Solid Phase Microextraction (SPME) (SPME를 이용한 수용액중의 휘발성 유기화합물 분석)

  • Park, Gyo-Beom;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.277-281
    • /
    • 2000
  • The solid phase microextrction (SPME) fiber which contains $100{\mu}m$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. sixteen volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/mass spectrometry (GC/MS). Analytical results showed that the percent of average recoveries and relative standard deviations were 97% and 4.7%, respectively. The value of detection limit was ranged from 0.01 to $0.5{\mu}g/l$. These results are more accurate than those obtained by the other methods such as purge and trap and headspace methods.

  • PDF

Determination of Homocysteine, Methionine, Cysteine in Human Plasma with SPME/GC-MS (SPME/GC-MS를 이용한 혈액중의 호모시스테인, 메치오닌 및 시스테인의 분석)

  • Yoo, Eun-Ah;Kim, Jung-Soo;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.736-742
    • /
    • 2000
  • The purpose of this study was to determine the homocysteine (Hey), methionine (Met) and cysteine (Cys) using solid phase micro-extraction (SPME)/gas chromatography (GC)-mass spectrometry (MS) in human plasma and to correlate between the plasma concentration of homocysteine with coronary artery disease. The homocysteine, methionine and cysteine in blood can be used as biomarkers for the risk assessment of vascular disease. The plasma homocysteine level for the coronary artery disease patients was higher than general patients. The concentration ranges of the Hcy, Met and Cys for coronary artery disease patients were $18.47-33.38{\mu}mol/L$, $30.16-55.72{\mu}mol/L$ and $183.16-387.32{\mu}mol/L$, respectively. This method showed good sensitivity and convenience.

  • PDF

Determination of Volatile Fatty Acids in Aqueous Samples by HS-SPME with In-Fiber Derivatization (Fiber내 유도체화/HS-SPME를 이용한 수용액 시료 중 휘발성 지방산의 분석)

  • Ahn, Yun Gyong;Lee, Jee Yeon;Kim, Jeehyeong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.458-465
    • /
    • 2003
  • The HS (headspace)-SPME (Solid phase microextraction) as rapid and simple method was performed for the determination of volatile fatty acids (VFAs) from the aqueous samples. In-fiber derivatization of VFAs with 1-Pyrenyldiazomethane (PDAM) was applied to improve their sensitivity of detection. In SPME procedure, typical parameters such as effects of solution pH, and salting out reagent and ultrasonication were investigated to improve the extraction efficiency. Based on the developed method, VFAs in wastewater samples were determined by gas chromatography / mass spectrometry-selected ion monitoring (GC/MS-SIM) mode.

Changes in Volatile Compounds of Green Tea during Growing Season at Different Culture Areas (녹차엽의 채취 시기와 재배지역에 따른 휘발성 향기 성분의 변화)

  • Lee, Joo-Yeon;Wang, Li-Fei;Baik, Joo-Hyun;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • Fresh tea leaves grown in Jeju Island and Jeonnam Province of South Korea were plucked and processed. Volatile compounds (VCs) were analyzed and identified with SPME-GC/GC-MS/GC-O. The VCs of green teas were classified into two major categories based on their aroma characteristics: the Greenish (Group I), and Floral (Group II) odorants. It was found that the VCs were decreased significantly in fresh tea leaves as they were plucked at the later stages of cultivation. The ratio of VCs responsible for Group I and Group II compounds was well-balanced in tea leaves plucked in May, but the balances were changed when the fresh leaves were processed. The major VCs of fresh tea leaves in Jeju and Jeonnam were n-hexanal, E-2-hexenal, Z-3-hexenal, myrcene, benzyl alcohol, linalool, and phenyl alcohol. Also, Jeju and Jeonnam tea leaves had different aroma composition. n-Heptanol, ${\beta}-pinene$, benzaldehyde, and ethyl salicylate were found in Jeju fresh tea leaves, and Z-3-hexenol, E-2-hexenol, and methyl n-heptanoate were detected in Jeju dry tea leaves. On the other hand, Z-linalool oxide and myrcene were found in Jeonnam dry tea leaves. The SPME-GC method showed high reproducibility (RSD, 7.4%) with no-artifact formation. In this study, optimum plucking period of tea leaves could be determined for production of high quality green tea with a well-balanced aroma and characteristic VCs in green tea according to growing areas.

Simultaneous Analysis of Gasonline and Chlorinated Solvents by GC/FID-SPME

  • 안상우;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.350-353
    • /
    • 2004
  • This study was conducted for a rapid and simple method using GC/FID and SPME to dectermin gasonline and chlorinated solvents simultaneity. A sodium chloride concentration of 25%(vol/w) combined with such as magnetic stirried, an absorption time of 20min, an extraction temperature of 4$0^{\circ}C$, the volume of minimized 50mL of gaseous phase and a desorption time of 5min pleprovided the greatest sensitivity while maintaining analytical efficiency. Analytical parameter such as linearity was also evaluated. The linear range extend from 30 to 500ppb. The results of chlorinated solvents and gasoline mixed samples showed that solvents have been completely removed from the sample preparation step and more accurated than those obtained by the other methods.

  • PDF

Analysis of Residual Furan in Human Blood Using Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS)

  • Lee, Yun-Kyung;Jung, Seung-Won;Lee, Sung-Joon;Lee, Kwang-Geun
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.379-383
    • /
    • 2009
  • For an accurate risk assessment of furan, a potential human carcinogen, levels must be determined in human blood plasma using a simple and robust assay. In this study, solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) was used to analyze blood plasma levels of furan in 100 healthy individuals who consumed a normal diet. The subjects were 30 to 70 years of age and 51% were women. Ultimately, an analytical method was established for analyzing furan in human blood. The limit of quantification (LOQ) and furan recovery rate in blood were 1.0 ppb and 104%, respectively. Finally, furan was detected in 21 individuals (13 males, 8 females) with levels ranging up to 17.86 ppb (ng furan/g food).

Headspace-Solid Phase Microextraction (HS-SPME) Analysis of Korean Fermented Soybean Pastes

  • Lee, Seung-Joo
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.700-705
    • /
    • 2009
  • In this study, the volatile compounds in 9 commercial fermented soybean pastes were extracted and analyzed by headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), respectively. A total of 63 volatile components, including 21 esters, 7 alcohols, 7 acids, 8 pyrazines, 5 volatile phenols, 3 ketones, 6 aldehydes, and 6 miscellaneous compounds, were identified. Esters, acids, and pyrazines were the largest groups among the quantified volatiles. About 50% of the total quantified volatile material was contributed by 5 compounds in 9 soybean paste samples; ethyl hexadecanoate, acetic acid, butanoic acid, 2/3-methyl butanoic acid, and tetramethyl-pyrazine. Three samples (CJW, SIN, and HAE) made by Aspergillus oryzae inoculation showed similar volatile patterns as shown in principal component analyses to GC-MS data sets, which showed higher levels in ethyl esters and 2-methoxy-4-vinylphenol. Traditional fermented soybean pastes showed overall higher levels in pyrazines and acids contents.

Study on identification of plastic used for modern artwork (플라스틱류 작품의 동정 기술 연구)

  • Yu, Ji A;Chung, Yong Jae;Ham, Seung Wook
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.100-107
    • /
    • 2014
  • Plastic has been widely used in modern artworks' materials due to its merits of process ability and mass production. In the country, value of plastic artifact is increasing but the field of plastic study is limited to industrial purpose. In this study, Identification methods of plastic were performed by SPME-GC/MS and pyrolysis-GC/MS using trace of samples. As a result of identification using SPME-GC/MS, aromatic compounds were identified from polyvinyl chloride. And alkane compounds were identified from polyethylene, and polypropylene. Aromatic compounds were identified from polystyrene, and diethylene glycol appeared in polyurethane based on polyester was identified from polyurethane. As a result of identification using pyrolysis- GC/MS, aliphatic alkenes compounds and phthalate(DEHP) were identified from polyvinyl chloride. Aliphatic alkenes compounds and phthalate(DIBP) were detected from polyethylene. 1-hexene, etc., were detected from polypropylene, aromatic compounds were identified from polystyrene, and methylene diphenyl diisocyanate which is polyurethane basic material was confirmed from polyurethane. This study suggested that non-destructive SPME and pyrolysis-GC/MS are useful to identify compounds particularly polystyrene and polyurethane. These two analytical methods were expected to be applied for identification of unidentified plastic artworks before conservation treatment.

The Evaluation of Solid-Phase Microextraction(SPME) Techniques for Analyzing Mixed Fuel Oxygenates and Products

  • 이재선;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.458-461
    • /
    • 2003
  • Solid-phase microextraction (SPME) and gas chromatography/headspace techniques(HS) and flame ionization detection (GC/FID) have been combined for determination of very polar compounds in water, including the widely used gasoline oxygenates and by-products. A relatively simple extraction method using a CAR/PDMS(75${\mu}{\textrm}{m}$) SPME fiber was optimized for the routine analysis of gasoline oxygenates and by-products in groundwater and reagent water. A sodium chloride concentration of 25%(w/w) combined with an extraction time of 20 min provided the greatest sensitivity while maintaining analytical efficiency Replicate analyses in fortified reagent and groundwater spiked with microgram per liter concentrations of gasoline oxygenates and by-products indicate quantitative and reproducible recovery of these and related oxygenate compounds. Method dynamic range was 50$\mu\textrm{g}$ L-1 to 3000$\mu\textrm{g}$ L-1 for gasoline oxygenates and by-products.

  • PDF

Comparison Solid Phase Microextraction with Purge & Trap on the GC/MS Analysis of Volatile Organic Compounds in Biota Samples (Solid Phase Microextraction 및 Purge & Trap을 이용한 생물시료 중 휘발성 유기화합물의 GC/MS 분석비교)

  • Ahn, Yun-Gyong;Seo, Jong-Bok;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.392-399
    • /
    • 2001
  • The analysis of n-butylbenzene and 1,2-dibromo-3-chloropropane (DBCP) as volatile organic compounds in biota samples was performed by gas chromatography/mass spectrometry-selected ion monitoring mode. The target compounds, n-butylbenzene and DBCP, in biota samples were extracted by headspace solid phase microextraction (SPME) with $100{\mu}m$ polydimethyl siloxane (PDMS) fiber and purge & trap method. The extraction recoveries of these compounds obtained by SPME was 85.8% for n-butylbenzene and 92.4% for DBCP, respectively. Each value of method detection limit were $0.15{\mu}g/kg$ and $0.05{\mu}g/kg$, respectively. While in the case of purge & trap method, the extraction recovery was 115.2% for n-butylbenzene, 80.9% for DBCP and method detection limit were $0.04{\mu}g/kg$ and $0.70{\mu}g/kg$, respectively. The extraction yields and detection limits of these compounds obtained by purge & trap were equivalent to those by SPME.

  • PDF