• Title/Summary/Keyword: GC-SPME

Search Result 221, Processing Time 0.026 seconds

Relationship between sensory attributes and volatile compounds of polish dry-cured loin

  • Gorska, Ewa;Nowicka, Katarzyna;Jaworska, Danuta;Przybylski, Wieslaw;Tambor, Krzysztof
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.720-727
    • /
    • 2017
  • Objective: The aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin. Methods: The volatile compounds were investigated by using solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). For sensory assessment, the quantitative descriptive analysis (QDA) method was used. Results: A total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively). The dominant compounds were: aromatic hydrocarbon (toluene); alkanes (hexane, heptane, and 2,2,4-trimethylpentane); aldehyde (hexanal); alcohol (2-furanmethanol); ketone (3-hydroxy-2-butanone); phenol (guaiacol); and terpenes (eucalyptol, cymene, ${\gamma}-terpinen$, and limonene). Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices. Conclusion: The analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production.

Effect of the Calpain System on Volatile Flavor Compounds in the Beef Longissimus lumborum Muscle

  • Yang, Jieun;Dashdorj, Dashmaa;Hwang, Inho
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.515-529
    • /
    • 2018
  • The present study was designed to investigate the effects of calpain system on the formation of volatile flavor compounds in Hanwoo beef. In the first experiment (exp.1), Longissimus lumborum (LL) muscle samples were injected with solutions containing 50 mM $CaCl_2$ or 50 mM $ZnCl_2$ and 154 mM NaCl respectively, and aged for 7 d at $4^{\circ}C$. In the second experiment (exp.2), the ground LL muscle was incubated with the aforementioned solutions containing cathepsin inhibitor. The injection with $CaCl_2$ solution greatly elevated the calpain activity and concomitantly, significantly decreased the Warner-Bratzler shear force (p<0.05). The pH, meat color and cooking loss did not differ (p>0.05) between the treatment groups. A total of 51 volatile compounds were identified using the solid phase microextraction with gas chromatography (SPME-GC). Results on volatile analyses from the both experiments showed that the injection with calcium ions led to significant increase (p<0.05) concentrations of pyrazines and sulfuric compounds. These results coincide with a higher rate of protein degradation due to the $CaCl_2$ injection as compared to the control group. Significantly (p<0.05) higher levels of lipid oxidation derived-aldehydes were found in the samples with $ZnCl_2$. The exp.1 showed that cathepsin inhibitors had no effect on the formation of volatile flavor components after 7 d of aging. These results imply that the proteolytic activity of the calpain system is associated with generation of volatile compounds of chiller-aged beef, while the role of cathepsins is likely very limited.

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

Quality Properties of Pear Vinegars with High-Acidity under Different Fermentation Conditions (고산도 배식초 제조 시 발효조건에 따른 품질특성)

  • Jo, Deokjo;Lee, Hye-Jin;Jeong, Yong-Jin;Yeo, Soo-Hwan;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.418-424
    • /
    • 2014
  • High-acidity vinegar was manufactured using pear concentrate by fed-batch fermentation without additional nutrients, and the physicochemical properties and volatile components were investigated at different fermentation stages (Stages 1-4) and at various initial alcohol concentrations (IAC; 6-9%). The levels of reducing sugar, free amino acids, total phenolic content, total flavonoid content, and radical scavenging ability increased slightly during Stage 4 (high-acidity vinegar), which was affected by alcohol feeding. The contents of approximately 20 types of volatile compounds differed between the moderate- and high-acidity vinegar samples, as determined by solid-phase microextraction/gas chromatography-mass spectroscopy. The level of acetic acid in high-acidity vinegar increased according to the initial alcoholic content applied. The high-acidity vinegar produced by fed-batch culture at an IAC of 6-7% showed improved physicochemical and volatile properties as compared to the moderate-acidity vinegar.

Effects of Queso Blanco Cheese Containing Bifidobacterium longum KACC 91563 on the Intestinal Microbiota and Short Chain Fatty Acid in Healthy Companion Dogs

  • Park, Ho-Eun;Kim, Ye Jin;Do, Kyung-Hyo;Kim, Jae Kwang;Ham, Jun-Sang;Lee, Wan-Kyu
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1261-1272
    • /
    • 2018
  • The effects of Queso Blanco cheese containing Bifidobacterium longum KACC 91563 was studied on the intestinal microbiota and short chain fatty acids (SCFAs) in healthy companion dogs. There were three experimental groups with five healthy dogs each: a control group, not fed with any cheese, and groups fed with Queso Blanco cheese with (QCB) or without B. longum KACC 91563 (QC) for 8 weeks. Fecal samples were collected 5 times before, during, and after feeding with cheese. Intestinal microbiota was analyzed using two non-selective agar plates (BL and TS) and five selective agar plates (BS, NN, LBS, TATAC, and MacConkey). SPME-GC-MS method was applied to confirm SCFAs and indole in dog feces. The six intestinal metabolites such as acetic, propionic, butyric, valeric, isovaleric acid and indole were identified in dog feces. Administration of B. longum KACC 91563 (QCB) for 8 weeks significantly increased the beneficial intestinal bacteria such as Bifidobacterium ($8.4{\pm}0.55$) and reduced harmful bacteria such as Enterobacteriaceae and Clostridium (p<0.05). SCFA such as acetic and propionic acid were significantly higher in the QCB group than in the Control group (p<0.05). In conclusion, this study demonstrates that administration of Queso Blanco cheese containing B. longum KACC 91563 had positive effects on intestinal microbiota and metabolites in companion dogs. These results suggest that Queso Blanco cheese containing B. longum KACC 91563 could be used as a functional food for companion animals and humans.

Detection of Geosmin Production Capability Using geoA Gene in Filamentous Cyanobacteria (Nostocales, Oscillatoriales) Strains (geoA 유전자를 이용한 사상형 남조류(Nostocales, Oscillatoriales)의 Geosmin 생성능 검출)

  • Ryu, Hui-Seong;Shin, Ra-Young;Seo, Kyung-Ae;Lee, Jung-Ho;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.661-668
    • /
    • 2018
  • Geosmin is volatile metabolites produced by a range of filamentous cyanobacteria which causes taste and odor problems in drinking water. Molecular ecological methods which target biosynthetic genes (geoA) are widely adopted to detect geosmin-producing cyanobacteria. The aim of this study was to investigate the potential production capability of 8 strains isolated from the Nakdong River. Ultimately, a suggestion for a genetical monitoring tool for the identification of geosmin producers in domestic waters was to be made. Geosmin was detected using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS) in two strains of Dolichospermum plactonicum (DGUC006, DGUC012) that were cultured for 28 day. The highest concentrations during the experiment period was $17,535ngL^{-1}$ and $14,311ngL^{-1}$ respectively. Additionally, geoA genes were amplified using two primers (geo78F/971R and geo78F/982R) from strains shown to produce geosmin, while amplification products were not detected in any of non-producing strains. PCR product (766 bp) was slightly shorter than the expected size for geosmin producers. According to the BLAST analysis, amplified genes were at nucleotide level with Anabaena ucrainica (HQ404996, HQ404997), Dolichospermum planctonicum (KM13400) and Dolichospermum ucrainicum (MF996872) between 99 ~ 100 %. Both strains were thus confirmed as potential geosmin-producing species. We concluded that the molecular method of analysis was a useful tool for monitoring potential cyanobacterial producers of geosmin.

Functional Characterization of khadi Yeasts Isolates for Selection of Starter Cultures

  • Motlhanka, Koketso;Lebani, Kebaneilwe;Garcia-Aloy, Mar;Zhou, Nerve
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.307-316
    • /
    • 2022
  • Yeasts play an important role in spontaneous fermentation of traditional alcoholic beverages. Our previous study revealed that a mixed-consortia of both Saccharomyces and non-Saccharomyces yeasts were responsible for fermentation of khadi, a popular, non-standardized traditional beverage with an immense potential for commercialization in Botswana. Functional characterization of isolated fermenting yeasts from mixed consortia is an indispensable step towards the selection of potential starter cultures for commercialization of khadi. In this study, we report the characterization of 13 khadi isolates for the presence of brewing-relevant phenotypes such as their fermentative capacity, ability to utilize a range of carbon sources and their ability to withstand brewing-associated stresses, as a principal step towards selection of starter cultures. Khadi isolates such as Saccharomyces cerevisiae, Saccharomycodes ludwigii and Candida ethanolica showed good brewing credentials but Lachancea fermentati emerged as the isolate with the best brewing attributes with a potential as a starter culture. However, we were then prompted to investigate the potential of L. fermentati to influence the fruity aromatic flavor, characteristic of khadi. The aroma components of 18 khadi samples were extracted using headspace solid phase micro-extraction (HS-SPME) and identified using a GC-MS. We detected esters as the majority of volatile compounds in khadi, typical of the aromatic signature of both khadi and L. fermentati associated fermentations. This work shows that L. fermentati has potential for commercial production of khadi.

A Comparison the Volatile Aroma Compounds between Ligularia fischeri and Ligularia fischeri var. spiciformis Leaves (곰취와 한대리곰취의 휘발성 향기성분 분석)

  • Han, Sang-Sup;Sa, Jou-Young;Lee, Kyeong-Cheol
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.209-217
    • /
    • 2010
  • The volatile aroma of fresh leaves is one of main factor in taste of all the edible green plants. The volatile aroma in almost edible green leaves are suggested as essential oil compounds. Ligularia fischeri, Synurus deltoides, Ligularia fischeri var. spiciformis and Aster scaber are one of the favourable edible green plants in Korea. In this study, volatile aroma compounds from Ligularia fischeri and Ligularia fischeri var. spiciformis species were analyzed by the SPME/GC/MSD method. Ligularia fischeri had 78 volatile aroma compounds such as D-limonene(20.28%), ${\alpha}$-pinene(dextro, 14.15%), L-${\beta}$-pinene(12.85%), 3-carene, ${\beta}$-cubebene(10.39%), etc. Ligularia fischeri var. spiciformis had 83 volatile aroma compounds such as D-limonene(36.97%), ${\beta}$-cubebene(13.95%), L-${\beta}$-pinene(13.38%), ${\alpha}$-pinene(dextro, 4.76%), caryophylle-ne(3.33%) etc. Conclusively, the commom volatile aroma compounds in Ligularia fischeri and Ligularia fischeri var. spiciformis leaves were D-limonene, ${\alpha}$-pinene, L-${\beta}$-pinene, ${\beta}$-cubebene, Caryophyllene, ${\alpha}$-farnesene, terpinolen. However, the composition and amount of volatile aroma compounds were very different between the two species.

Comparative Profiling of Volatiles in Flower Tea of Dendranthema zawadskii var. latilobum, Chrysanthemum morifolium, Tagetes erecta, and Matricaria chamomilla (구절초, 국화, 마리골드 및 캐모마일 꽃차의 향기 성분 비교)

  • Kanphassorn Wimonmuang;Young-Sang Lee;Seung-Young Oh;Suk-Keun Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.109-109
    • /
    • 2020
  • 꽃차(Flower tea)는 최근 다양한 제품이 개발되고 소비가 확대되는 등 그 산업적 가치가 증대하고 있다. 꽃차의 향기 특성은 우렸을 때 나타나는 색깔 및 인체에서의 생리활성과 더불어 주요한 꽃차 품질결정 요소이다. 본 연구는 꽃차로의 이용이 활발한 국화과 식물 중 구절초(Dendranthema zawadskii var. latilobum), 국화(Chrysanthemum morifolium), 노랑색 및 주황색 마리골드(Tagetes erecta 'Yellow' and 'Orange'), 그리고 캐모마일(Matricaria chamomilla)의 향기 성분특성을 구명하기 위하여 제조된 꽃차를 headspace-solidphase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS)를 이용하여 분리, 동정하였다. 국화과 꽃차로부터 총 117종의 휘발성 성분이 확인되었는데, 각 꽃차 종류별 동정된 휘발성 성분의 개수, 주요 3개 휘발성 성분과 전체 향기성분 peak중 이들이 차지하는 구성비율(%)은 다음과 같았다: 구절초 64종, camphor (31%), α-pinene(14%), camphene(14%); 국화 60종, camphor(15%), chrysantheny acetate(13%), eucalyptol (11%); 마리골드 '옐로우' 53종, 2,4-heptadienal(26%), trans-isocarveol(21%), cis-β-Copaene(18%); 마리골드 '오렌지' 61종, β-caryophyllene(16%), β-ocimene epoxide(12%), β-ocimene(12%); 캐모마일 50종, β-farnesene(63%), nonane(9%), spathulenol(5%). 국화과 꽃차 5종 모두에서 공통적으로 검출된 성분은 β-caryophyllene, α-pinene, β-farnesene 등 10종이었으며 마리골리 '옐로'는 '오렌지'와 주요 향기성분의 조성에서 뚜렷한 차이를 나타내었다. 비록 그 함량은 낮았으나 구절초, 국화, 마리골드 '오렌지', 그리고 캐모마일은 각각 10종, 12종, 3종 및 13종이었다. 마리골드 '엘로'의 경우 검출된 모든 향기성분은 마리골드 '오렌지'나 다른 국화과 식물의 꽃차에서도 검출된 바, 향기 성분이 다양성이 다소 낮게 나타났다.

  • PDF

Potentiality of Beneficial Microbe Bacillus siamensis GP-P8 for the Suppression of Anthracnose Pathogens and Pepper Plant Growth Promotion

  • Ji Min Woo;Hyun Seung Kim;In Kyu Lee;Eun Jeong Byeon;Won Jun Chang;Youn Su Lee
    • The Plant Pathology Journal
    • /
    • v.40 no.4
    • /
    • pp.346-357
    • /
    • 2024
  • This study was carried out to screen the antifungal activity against Colletotrichum acutatum, Colletotrichum dematium, and Colletotrichum coccodes. Bacterial isolate GP-P8 from pepper soil was found to be effective against the tested pathogens with an average inhibition rate of 70.7% in in vitro dual culture assays. 16S rRNA gene sequencing analysis result showed that the effective bacterial isolate as Bacillus siamensis. Biochemical characterization of GP-P8 was also performed. According to the results, protease and cellulose, siderophore production, phosphate solubilization, starch hydrolysis, and indole-3-acetic acid production were shown by the GP-P8. Using specific primers, genes involved in the production of antibiotics, such as iturin, fengycin, difficidin, bacilysin, bacillibactin, surfactin, macrolactin, and bacillaene were also detected in B. siamensis GP-P8. Identification and analysis of volatile organic compounds through solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) revealed that acetoin and 2,3-butanediol were produced by isolate GP-P8. In vivo tests showed that GP-P8 significantly reduced the anthracnose disease caused by C. acutatum, and enhanced the growth of pepper plant. Reverse transcription polymerase chain reaction analysis of pepper fruits revealed that GP-P8 treated pepper plants showed increased expression of immune genes such as CaPR1, CaPR4, CaNPR1, CaMAPK4, CaJA2, and CaERF53. These results strongly suggest that GP-P8 could be a promising biocontrol agent against pepper anthracnose disease and possibly a pepper plant growth-promoting agent.