• Title/Summary/Keyword: GABA Receptor

Search Result 147, Processing Time 0.025 seconds

GABRQ expression is a potential prognostic marker for patients with clear cell renal cell carcinoma

  • Dongjun Lee;Mihyang Ha;Chae Mi Hong;Jayoung Kim;Su Min Park;Dongsu Park;Dong Hyun Sohn;Ho Jin Shin;Hak-Sun Yu;Chi Dae Kim;Chi-Dug Kang;Myoung-Eun Han;Sae-Ock Oh;Yun Hak Kim
    • Oncology Letters
    • /
    • v.18 no.6
    • /
    • pp.5731-5738
    • /
    • 2019
  • Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. Novel biomarkers of ccRCC may provide crucial information on tumor features and prognosis. The present study aimed to determine whether the expression of γ-aminobutyric acid (GABA) A receptor subunit θ (GABRQ) could serve as a novel prognostic marker of ccRCC. GABA is the main inhibitory neurotransmitter in the brain that activates the receptor GABAA, which is comprised of three subunit isoforms: GABRA3, GABRB3 and GABRQ. A recent study reported that GABRQ is involved in the initiation and progression of hepatocellular carcinoma; however, the role of GABRQ in ccRCC remains unknown. In the present study, clinical and transcriptomic data were obtained from cohorts of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). Differential GABRQ expression levels among early (TI and II), late (TIII and IV), nonmetastatic (M0) and metastatic (M1, primary tumor) stages of ccRCC samples were then identified. Furthermore, the use of GABRQ as a prognostic gene was analyzed using Uno's C-index based on the time-dependent area under the curve (AUC), the AUC of the receiver operating characteristic curve at 5 years, the Kaplan-Meier survival curve and multivariate analysis. The survival curve analysis revealed that low GABRQ mRNA expression was significantly associated with a poor prognosis of ccRCC (P<0.001 and P=0.0012 for TCGA and ICGC data, respectively). In addition, analyses of the C-index and AUC values further supported this discriminatory power. Furthermore, the prognostic value of GABRQ mRNA expression was confirmed by multivariate Cox regression analysis. Taken together, these results suggested that GABRQ mRNA expression may be considered as a novel prognostic biomarker of ccRCC.

알츠하이머병(Alzheimer's disease)의 신약개발을 위한 5-HT6 serotonin 수용체의 구조 예측 및 리간드 다킹(docking) 연구

  • Kim, Hyeon-Gyeong;Jo, Eun-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.46-53
    • /
    • 2017
  • 알츠하이머병은 치매를 유발하는 가장 주된 원인 질환으로 환자들은 인지장애를 겪게 된다. 현재 치료약으로 사용되는 약으로는 acetylcholinesterase 저해재가 있지만 이 약들의 효과는 미비하다. 그래서 인지기능에 영향을 미친다고 알려진 신경전달물질인 GABA, Glutamate, acetylcholine의 수치를 조절 할 수 있는 $5-HT_6$ receptor antagonist가 현재 개발되고 있다. 현재 여러 antagonist들이 임상실험 되었고, 인지 능력향상에 효과를 보이고 있다. 그러나, $5-HT_6$ receptor의 구조가 밝혀지지 않아 아직 원자적 수준의 결합 분석이 이루어지지 않았으므로 이 부분에 대한 연구가 필요하다. 따라서 본 연구에서는 Homology modeling을 통해 receptor의 구조를 예측하고, 현재 임상실험 중인 antagonist들 중 7개를 docking을 통해 단백질과 리간드의 결합을 예측하였다. Edison에서 Galaxy TBM과 Galaxy Refine을 사용하여 Homology modeling 한 결과 GPCR의 전형적인 모델에 특징적으로 긴 cterminal을 가졌다는 것을 확인 할 수 있었다. 생성된 구조를 가지고 Edison의 Dock 프로그램으로 7개의 antagonist가 어떠한 결합을 하는지 분석하였다. 그 결과, binding pose에 공통적으로 Trp102, Asp106, Val107, Pro177, Phe188, Val189, Ala192, Phe284, Phe285, Asn288, Thr306, Tyr310이 관여하는 것을 docking을 통해 알 수 있었다. 특히, Phe285는 7개의 antagonist 중에 4개와의 interaction을 하고 있는 것을 관찰하였다. 이 연구를 통하여 $5-HT_6$에 효과적으로 결합하여 치료효과를 낼 수 있는 신약을 개발할 수 있다.

  • PDF

Brain Benzodiazepine-like Molecules and Stress-anxiety Response (뇌조직내 Benzodiazepine 유사물질과 스트레스-불안 반응)

  • Ha, Jeoung-Hee
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • Benzodiazepines(BZDs) are among the most widely prescribed drugs in the world. They are potent anxiolytic, antiepileptic, hypnotic, and muscle relaxing agents. There is an emerging model of the role of several neural systems in anxiety and their relation to the mechanism of action of BZDs. It has been postulated that BZD drugs exert their anxiolytic action by regulating GABAergic transmission in limbic areas such as the amygdala, in the posterior hypothalamus, and in the raphe nuclei. The involvement of the amygdala in the behaviors triggered by fear and stress has been suggested by many previous studies. In this review, reports about regulatory effects of endogenous BZD receptor ligands on the perception of anxiety and memory consolidation were summerized. These findings further support the contention that BZD receptor ligands modulate memory consolidation of averse learning tasks by influencing the level of stress and/or anxiety that accompanies a learning experience. The findings suggest that the decrease in the limbic levels of BZD-like molecules seen after the various behavioral procedures represent a general response to stress and/or anxiety, since it occurs in proportion to the level of stress and/or anxiety that accompany these tasks. In addition, these findings further support the hypothesis that the $GABA_A$/BZD receptor complex in limbic structures plays a pivotal role in the stress and anxiety.

  • PDF

Effects of Taurine on Glutamate-induced Neurotoxicity and Interleukin-6 mRNA Expression in Astrocytes

  • Yang, Seong-Chil;Baek, Su-Yeon;Choe, In-Pyo;Lee, Chang-Jung
    • Animal cells and systems
    • /
    • v.1 no.3
    • /
    • pp.467-473
    • /
    • 1997
  • Taurine (2-aminoethanesulfonic acid), one of bioactive amino acid in the mammalian brain, is known to exert inhibitory effects on neurons via GABA receptor. In the present study, we examined effects of taurine on glutamateinduced neurotoxicity on hippocampal neuron cell culture using cell counting method and lactate dehydrogenase (LDH) assay. After 10 d of culture, cells were stimulated with appropriate drugs. Only 43% of cultured neuronal cells survived at one day after stimulation with 500 uM L-glutamate for 10 min. Survival rate was enhanced by 82% in the presence of 10 mM taurine. LDH activity from the culture supernatant incubated with a combination of L-glutamate and taurine was less than half of that with L-glutamate alone. In the next series of experiments, interleukin-6 (IL-6) mRNA expression in cultured astrocytes was investigated using reverse tanscription-PCR (RT-PCR). IL-6 mRNA was detected in the astrocytes stimulated with L-glutamate in a dose-dependent manner, while not detected in the unstimulated control astrocytes. The expression of IL-6 mRNA caused by 10 mM glutamate was inhibited by taurine, but not by GABA. These findings demonstrated a neuroprotective action of taurine against glutamate-induced toxicity.

  • PDF

The Sedative Effects of Ethanol Extract from Cimicifugae Rhizoma (승마 에탄올 추출물의 진정 효과)

  • Choi, Yun-Jung;Yoon, Seo-Young;Choi, Ji-Young;Woo, Tae-Seon;Son, Kun-Ho;Lee, Yong-Soo;Cheong, Jae-Hoon
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.213-218
    • /
    • 2011
  • The aim of this study is to evaluate the sedative effects of ethanol extract and the three major constituents of Cimicifugae Rhizoma. They decreased locomotor activity significantly, and enhanced sleeping duration induced by thiopental sodium. The ethanol extract of Cimicifugae rhizoma and 24-epi-7,8-didehydrocimigenol-3-xyloside (24-epi.) increased the $Cl^-$ influx into the intracellular area of SH-SY5Y neuroblastoma cells significantly. The present results demonstrate that the sedative effects of Cimicifugae rhizoma are mediated via the GABA-gated $Cl^-$ channel, partly by 24-epi.

Modulation of Bujaijung-tang and Bojungikgi-tang on Inhibitory and Excitatory Neurotransmitters Activated Ion Channels (부자이중탕과 보중익기탕의 억제성 및 흥분성 신경전달 물질에 의하여 활성화되는 이온통로 조절작용)

  • Lee, Hye-Jung;Seo, Jung-Chul;Lee, Jae-Dong;Kim, Ee-Hwa;Lee, Choong-Yeol;Chung, Joo-Ho;Shin, Min-Chul;Kim, Hyun-Bae;Kim, Youn-Jung;Kim, Chang-Ju
    • Journal of Acupuncture Research
    • /
    • v.17 no.4
    • /
    • pp.5-17
    • /
    • 2000
  • To research the characteristics of ion currents induced by Bujaijung-tang and Bojungikgi-tang, nystatin-perforated patch clamp technique under voltage-c(amp condition was used. Periaqueductal gray neuron was dissociated from Sprauge-Dawley rat, 10-15 days old. Cytotoxicity of Bujaijung-tang and Bojungikgi-tang showed incubation time and concentration dependent manner. Ion current activated by Bujaijung-tang and Bojungikgi-tang were inhibited by bicuculline and strychnine and CNQX. It can be suggested that Bujaijung-tang and Bojungikgi-tang modulate inhibitory and excitatory neurotransmitters-, GABA, glycine and non-NMDA, acticvated ion channels. Modulatory effect of Bujaijung-tang and Bojungikgi-tang was more greater in inhibitory neurotransmitters. Low concentration of Bujaijung-tang which dose not elicit ion current itself, activated GABA and glycine induced chloride currents. In this study, we can found that the activation of Bujaijung-tang and Bojungikgi-tang on non-NMDA subtypes of glutamate receptor is its major action mechanism and can be used as very effective Herb treatment on Myasthenia gravis patient.

  • PDF

Anxiolytic Effects of Woohwangcheongsimwon in Mice

  • Yoon, Byung-Hoon;Kim, Dong-Hyun;Lee, Seung-Joo;Shin, Bum-Young;Lee, Yong-Hyuk;Kim, Dong-Hee;Park, Chan-Sung;Lee, Yong-Wook;Cho, Hi-Jae;Yamamoto, Yutaka;Kang, Dong-Hyo;Ryu, Jong-Hoon
    • Natural Product Sciences
    • /
    • v.15 no.3
    • /
    • pp.115-120
    • /
    • 2009
  • Woohwangcheongsimwon (WHCSW) is a traditional oriental medicinal fomula which has been clinically used for treating strokes, palpitation, loss of consciousness and anxiety. The purpose of this study was to characterize the putative anxiolytic properties of WHCSW using an elevated plus-maze (EPM) and hole-board test. Control mice were orally treated with an equal volume of vehicle (10% Tween 80 solution), and positive control mice were treated with diazepam (1 mg/kg, i.p.). In the EPM test, WHCSW significantly increased the percentage of time-spent in the open arms (200 mg/kg, P < 0.05) and the percentage of open arm entries (200 and 400 mg/kg, P < 0.05). WHCSW also significantly increased the number of head-dips in the hole-board test (200 mg/kg, P < 0.05). In addition, the anxiolytic properties of WHCSW examined in the EPM test were inhibited by flumazenil (10 mg/kg, i.p.), a GABA$_A$ antagonist. However, no changes in spontaneous locomotor activity or myorelaxant effects were observed versus 10% Tween 80 controls. These results suggested that WHCSW is an effective anxiolytic agent, and that its anxiolytic effects are mediated via GABA$_A$ receptors.

Repeated Administration of Korea Red Ginseng Extract Increases Non-Rapid Eye Movement Sleep via GABAAergic Systems

  • Lee, Chung-Il;Kim, Chung-Soo;Han, Jin-Yi;Oh, Eun-Hye;Oh, Ki-Wan;Eun, Jae-Soon
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.403-410
    • /
    • 2012
  • The current inquiry was conducted to assess the change in sleep architecture after long periods of administration to determine whether ginseng can be used in the therapy of sleeplessness. Following post-surgical recovery, red ginseng extract (RGE, 200 mg/kg) was orally administrated to rats for 9 d. Data were gathered on the 1st, 5th, and 9th day, and an electroencephalogram was recorded 24 h after RGE administration. Polygraphic signs of unobstructed sleep-wake activities were simultaneously recorded with sleep-wake recording electrodes from 11:00 a.m. to 5:00 p.m. for 6 h. Rodents were generally tamed to freely moving polygraphic recording conditions. Although the 1st and 5th day of RGE treatment showed no effect on power densities in nonrapid eye movement (NREM) and rapid eye movement (REM) sleep, the 9th day of RGE administration showed augmented ${\alpha}$-wave (8.0 to 13.0 Hz) power densities in NREM and REM sleep. RGE increased total sleep and NREM sleep. The total percentage of wakefulness was only decreased on the 9th day, and the number of sleep-wake cycles was reduced after the repeated administration of RGE. Thus, the repeated administration of RGE increased NREM sleep in rats. The ${\alpha}$-wave activities in the cortical electroencephalograms were increased in sleep architecture by RGE. Moreover, the levels of both ${\alpha}$- and ${\beta}$-subunits of the ${\gamma}$-aminobutyric acid $(GABA)_A$ receptor were reduced in the hypothalamus of the RGE-treated groups. The level of glutamic acid decarboxylase was over-expressed in the hypothalamus. These results demonstrate that RGE increases NREM sleep via $GABA_A$ergic systems.

Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice

  • Sun Mi Gu;Eunchong Hong;Sowoon Seo;Sanghyeon Kim;Seong Shoon Yoon;Hye Jin Cha;Jaesuk Yun
    • Journal of Veterinary Science
    • /
    • v.25 no.5
    • /
    • pp.63.1-63.12
    • /
    • 2024
  • Importance: Glutamic acid decarboxylase 67 (GAD67) is a gamma-aminobutyric acid (GABA) synthesis enzyme associated with the function of other neurotransmitter receptors, such as the N-methyl-D-aspartate (NMDA) receptor and cannabinoid receptor 1. However, the role of GAD67 in the development of different abused drug-induced reward behaviors remains unknown. In order to elucidate the mechanisms of substance use disorder, it is crucial to study changes in biomarkers within the brain's reward circuit induced by drug use. Objective: The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development. Methods: We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP). Results: Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group. Conclusions and Relevance: These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.

5-Hydroxytryptamine Inhibits Glutamatergic Synaptic Transmission in Rat Corticostriatal Brain Slice

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Kim, Seong-Yun;Cho, Young-Jin;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.255-262
    • /
    • 2005
  • Striatum is involved in the control of movement and habitual memory. It receives glutamatergic input from wide area of the cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from the raphe nuclei. In our study, the effects of 5-HT on synaptic transmission were studied in the rat corticostriatal brain slice using in vitro whole-cell recording technique. 5-HT inhibited the amplitude as well as frequency of spontaneous excitatory postsynaptic currents (sEPSC) significantly, and neither ${\gamma}-aminobutyric$ acid (GABA)A receptor antagonist bicuculline (BIC), nor $N-methyl-_{D}-aspartate$ (NMDA) receptor antagonist, $_{DL}-2-amino-5-phosphonovaleric$ acid (AP-V) could block the effect of 5-HT. In the presence non-NMDA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenxo[f] quinoxaline-7-sulfonamide (NBQX), the inhibitory effect of 5-HT was blocked. We also figured out that 5-HT change the channel kinetics of the sEPSC. There was a significant increase in the rise time during the 5-HT application. Our results suggest that 5-HT has an effect on both pre- and postsynaptic site with decreasing neurotransmitter release probability of glutamate and decreasing the sensitivity to glutamate by increasing the rise time of non-NMDA receptor mediated synaptic transmission in the corticostriatal synapses.