• Title/Summary/Keyword: GA-hard problem

Search Result 46, Processing Time 0.02 seconds

Co-Evolutionary Model for Solving the GA-Hard Problem (GA-Hard 문제를 풀기 위한 공진화 모델)

  • Park Chang-Hyun;Lee Bong-Wook;Sim Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.313-316
    • /
    • 2005
  • 공진화 알고리즘은 두 개 이상의 개체군이 상호작용하며 진화하는 알고리즘이다. 기존의 진화 알고리즘이 하나의 개체군으로 구성된 정적인 적합도 지형에서 해를 찾는 방식임에 반해 공진화 알고리즘은 두개 이상의 개체군이 동적인 적합도 지형을 제공하여 더 강건하고 빠른 수렴성을 보인다. 본 논문에서는 GA가 풀기 어려운 GA-hard problem을 풀기 위하여 저자가 제안한 3가지 공진화 모델을 설명한다. 첫번째 모델은 찾고 자하는 해와 환경을 각각 경쟁하는 개체군으로 구성해 진화하는 방법으로 사용자의 환경설정에 의해 지역적 해를 찾는 것을 방지하는 경쟁적 공진화 알고리즘이다. 두 번째 모델은 찾고자하는 해와 이를 보조하는 스키마를 각각 개체군으로 구성해 진화하는 스키마 공진화 알고리즘이다. 세 번째 알고리즘은 해를 구성하는 부분을 두 개의 개체군으로 나누고 두 개체군이 서로 게임을 통해 진화하도록 하는 게임이론에 기반한 공진화 알고리즘이다.

  • PDF

Co-Evolutionary Model for Solving the GA-Hard Problems (GA-Hard 문제를 풀기 위한 공진화 모델)

  • Lee Dong-Wook;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.375-381
    • /
    • 2005
  • Usually genetic algorithms are used to design optimal system. However the performance of the algorithm is determined by the fitness function and the system environment. It is expected that a co-evolutionary algorithm, two populations are constantly interact and co-evolve, is one of the solution to overcome these problems. In this paper we propose three types of co-evolutionary algorithm to solve GA-Hard problem. The first model is a competitive co-evolutionary algorithm that solution and environment are competitively co-evolve. This model can prevent the solution from falling in local optima because the environment are also evolve according to the evolution of the solution. The second algorithm is schema co-evolutionary algorithm that has host population and parasite (schema) population. Schema population supply good schema to host population in this algorithm. The third is game model-based co-evolutionary algorithm that two populations are co-evolve through game. Each algorithm is applied to visual servoing, robot navigation, and multi-objective optimization problem to verify the effectiveness of the proposed algorithms.

Solving Nonlinear Fixed Charge Transportation Problem by Spanning Tree-based Genetic Algorithm (신장트리 기반 유전자 알고리즘에 의한 비선형 fcTP 해법)

  • Jo, Jung-Bok;Ko, Suc-Bum;Gen, Mitsuo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.752-758
    • /
    • 2005
  • The transportation problem (TP) is known as one of the important problems in Industrial Engineering and Operational Research (IE/OR) and computer science. When the problem is associated with additional fixed cost for establishing the facilities or fulfilling the demand of customers, then it is called fixed charge transportation problem (fcTP). This problem is one of NP-hard problems which is difficult to solve it by traditional methods. This paper aims to show the application of spanning-tree based Genetic Algorithm (GA)approach for solving nonlinear fixed charge transportation problem. Our new idea lies on the GA representation that includes the feasibility criteria and repairing procedure for the chromosome. Several numerical experimental results are presented to show the effectiveness of the proposed method.

Solving Minimum Weight Triangulation Problem with Genetic Algorithm (유전 알고리즘을 이용한 최소 무게 삼각화 문제 연구)

  • Han, Keun-Hee;Kim, Chan-Soo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.341-346
    • /
    • 2008
  • Minimum Weight Triangulation (MWT) problem is an optimization problem searching for the triangulation of a given graph with minimum weight. Like many other graph problems this problem is also known to be NP-hard for general graphs. Several heuristic algorithms have been proposed for this problem including simulated annealing and genetic algorithm. In this paper, we propose a new genetic algorithm called GA-FF and show that the performance of the proposed genetic algorithm outperforms the previous one.

Applying Genetic Algorithm to the Minimum Vertex Cover Problem (Minimum Vertex Cover 문제에 대한 유전알고리즘 적용)

  • Han, Keun-Hee;Kim, Chan-Soo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.609-612
    • /
    • 2008
  • Let G = (V, E) be a simple undirected graph. The Minimum Vertex Cover (MVC) problem is to find a minimum subset C of V such that for every edge, at least one of its endpoints should be included in C. Like many other graph theoretic problems this problem is also known to be NP-hard. In this paper, we propose a genetic algorithm called LeafGA for MVC problem and show the performance of the proposed algorithm by applying it to several published benchmark graphs.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

GA-based Two Phase Method for a Highly Reliable Network Design (높은 신뢰도의 네트워크 설계를 위한 GA 기반 두 단계 방법)

  • Jo, Jung-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1149-1160
    • /
    • 2005
  • Generally, the network topology design problem, which is difficult to solve with the classical method because it has exponentially increasing complexity with the augmented network size, is characterized as a kind of NP-hard combinatorial optimization problem. The problem of this research is to design the highly reliable network topology considering the connection cost and all-terminal network reliability, which can be defined as the probability that every pair of nodes can communicate with each other. In order to solve the highly reliable network topology design problem minimizing the construction cost subject to network reliability, we proposes an efficient two phase approach to design reliable network topology, i.e., the first phase employs, a genetic algorithm (GA) which uses $Pr\ddot{u}fer$ number for encoding method and backtracking Algorithm for network reliability calculation, to find the spanning tree; the second phase is a greedy method which searches the optimal network topology based on the spanning ree obtained in the first phase, with considering 2-connectivity. finally, we show some experiments to demonstrate the effectiveness and efficiency of our two phase approach.

DNA Computing Adopting DNA coding Method to solve effective Knapsack Problem (효과적인 배낭 문제 해결을 위해 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim Eun-Gyeong;Lee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.730-735
    • /
    • 2005
  • Though Knapsack Problem appears to be simple, it is a NP-hard problem that is not solved in polynomial time as combinational optimization problems. To solve this problem, GA(Genetic Algorithms) was used in the past. However, there were difficulties in real experiments because the conventional method didn't reflect the precise characteristics of DNA. In this paper we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to solve problems of Knapsack Problem. ACO was applied to (0,1) Knapsack Problem; as a result, it reduced experimental errors as compared with conventional methods, and found accurate solutions more rapidly.

DNA Computing adopting DNA Coding Method to solve Knapsack Problem (배낭 문제를 해결하기 위해 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • 김은경;이상용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.243-246
    • /
    • 2004
  • 배낭 문제는 단순한 것 같지만 조합형 특성을 가진 NP-hard 문제이다 이 문제를 해결하기 위해 기존에는 GA(Genetic algorithms)를 이용하였으나 지역해에 빠질 수 있어 잘못된 해를 찾거나 찾지 못하는 문제점을 갖고 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 막대한 병렬성과 저장능력을 가진 DNA 컴퓨팅 기법에 DNA에 기반한 변형된 GA인 DNA 코딩 방법을 적용한 ACO(Algorithm for Code Optmization)를 제안한다. ACO는 배낭 문제 중 (0,1)-배낭 문제에 적용하였고, 그 결과 기존의 GA를 이용한 것 보다 초기 문제 표현에서 우수한 적합도를 생성했으며, 빠른 시간내에 우수한 해를 찾을 수 있었다.

  • PDF

Coordinated Control of the Reactive Power Compensator Using a Genetic Algorithm (GA를 이용한 무효전력 보상기의 협조제어)

  • 이송근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.58-61
    • /
    • 2003
  • A loop power system has a nonlinear characteristics. Also it is very hard to analyse through a equation if a discontinuous characteristic of the ULTC is added to a system. However, the problem which is hard to analyse by equations can acquire the useful result with what use the genetic algorithm (GA) which is a multi-point search program. In this paper, we proved through a simulation that the proposed method can reduce an operation frequency of tap changers and improving the quality of voltage of the buses by decreasing the deviation between the actual voltage and the reference voltage through the coordinated control of the ULTC that use GA in the loop power system.