• Title/Summary/Keyword: G-structure

Search Result 5,131, Processing Time 0.028 seconds

ON THE *g-ME-CONNECTION AND THE *g-ME-VECTOR IN *g-MEXn

  • Yoo, Ki-Jo
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.603-616
    • /
    • 2008
  • A generalized n-dimensional Riemannian manifold $X_n$ on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$, satisfying certain conditions, through the $^*g$-ME-connection which is both Einstein's equation and of the form(3.1) is called $^*g$-ME-manifold and we denote it by $^*g-MEX_n$. In this paper, we prove a necessary and sufficient condition for the existence of $^*g$-ME-connection and derive a surveyable tensorial representation of the $^*g$-ME-connection and the $^*g$-ME-vector in $^*g-MEX_n$.

A Study on the Prevention of Liquefaction Damage of the Sheet File Method Applicable to the Foundation of Existing Structures Using the 1-G Shaking Table Experiment (1-G 진동대 실험을 이용한 기존 구조물 기초에 적용 가능한 시트파일 공법의 액상화 피해 방지에 관한 연구)

  • Jongchan Yoon;Suwon Son;Junhyeok Park;Junseong Moon;Jinman Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.7
    • /
    • pp.5-14
    • /
    • 2023
  • Recently, earthquakes have occurred frequently in worldwide. These earthquakes cause various forms of natural and physical damage. In particular, liquefaction in which the ground shows liquid-like behavior causes great damage to the structure. Accordingly, various liquefaction damage reduction methods are being studied and developed. Therefore, in this study, a method of reducing liquefaction damage in the event of an earthquake applicable to existing structures was studied using the sheet pile method. The 1-G Shaking table test was performed and the ground was constructed with Jumunjin standard sand. A two-story model structure was produced by applying the similitude law, and the input wave applied a sine wave with an acceleration level of 0.6 g and a frequency of 10 Hz. The effect of reducing structure damage according to various embedded depth ratio was analyzed. As a result of the study, the structure settlement when the ground is reinforced by applying the sheet pile method is decreased by about 71% compared to when the ground is not reinforced, and the EDR with minimum settlement is "1". In addition, as the embedded depth ratio is increased, the calculation of the pore water pressure in the ground tends to be delayed due to the sheet pile. Based on these results, the relationship with structural settlement according to the embedded depth ratio is proposed as a relational equation with the graph. The results of this study are expected to be used as basic data in developing sheet pile methods applicable to existing structures in the future.

frequency Domain processor nor ADSL G.LITE Modem (ADSL G.LITE모뎀을 위한 주파수 영역 프로세서의 설계)

  • 고우석;기준석;고태호;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12C
    • /
    • pp.233-239
    • /
    • 2001
  • Among the operations in frequency domain for ADSL G.LITE Modem to perform, FFT and FEQ are most computation-intensive part, of which many researches have been focused on the efficient implementation. Previous papers suggested hardwares suitable for ADSL G.DMT system, which is not feasible for simple G.LITE system. The analysis of frequency domain operations and computational efficiency according to the allocation of hardware resources is performed in this paper. The suggested processor has the structure of one real multiplier and two real adders connected in parallel, which can perform the operations efficiently through the pipeline- and/or parallel-type job scheduling. The suggested processor uses less hardware resources than Kiss\`s ALU structure or FFT/IFFT processor suggested by Wang, so the suggested one is more suitable for G.LITE system than previous works.

  • PDF

ON THE REPRESENTATION OF THE *g-ME-VECTOR IN *g-MEXn

  • Yoo, Ki-Jo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.495-510
    • /
    • 2010
  • An Einstein's connection which takes the form (2.23) is called a $^*g$-ME-connection and the corresponding vector is called a $^*g$-ME-vector. The $^*g$-ME-manifold is a generalized n-dimensional Riemannian manifold $X_n$ on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$, satisfying certain conditions, through the $^*g$-ME-connection and we denote it by $^*g-MEX_n$. The purpose of this paper is to derive a general representation and a special representation of the $^*g$-ME-vector in $^*g-MEX_n$.

Application of Hierarchical ZnCo2O4 Hollow Nanofibers for Anode Materials in Lithium-ion Batteries (계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유의 리튬이온배터리 음극소재 적용)

  • Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.559-564
    • /
    • 2019
  • Hierarchical $ZnCo_2O_4$ hollow nanofibers were prepared by electrospinning and subsequent heat-treatment process. The spinning solution containing polystyrene (PS) nanobeads was electrospun to nanofibers. During heat-treatment process, PS nanobeads in the composite were decomposed and therefore generated numerous pores uniformly in the structure, which facilitated the heat transfer and gas penetration into the structure. The resulting hierarchical $ZnCo_2O_4$ hollow nanofibers were applied as an anode material for lithium-ion batteries. The discharge capacity of the nanofibers was $815mA\;h\;g^{-1}$ ($646mA\;h\;cm^{-3}$) after the 300th cycle at a high current density of $1.0A\;g^{-1}$. However, $ZnCo_2O_4$ nanopowders showed the discharge capacity of $487mA\;h\;g^{-1}$ ($450mA\;h\;cm^{-3}$) after 300th cycle. The excellent lithium ion storage property of the hierarchical $ZnCo_2O_4$ hollow nanofibers was attributed to the synergetic effects of the hollow nanofiber structure and the $ZnCo_2O_4$ nanocrystals composing the shell. The hierarchical hollow nanofiber structure introduced in this study can be extended to various metal oxides for various applications, including energy storage.

Finite Element Analysis on the Stress and Displacement Behavior Safeties of Dome Roof Structures for a LNG Storage Tank (LNG 저장탱크 돔루프 구조물의 응력 및 변형거동 안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.7-12
    • /
    • 2010
  • This paper presents FE analysis on the stress and displacement behavior safeties of dome roof structures for a LNG outer tank, which is constructed by sets of H beams and reinforced concrete. The excitation force of 0.2g is applied at the center of the bottom concrete structure of an outer tank. The computed FEM results indicated that the maximum von Mises stress was shown at the edge of dome roof structure and the maximum displacement was produced at the center of dome roof. The results showed that the concentrated stress and displacement were steadily increased for an increased number of H beams. This means that the number of H beams does not critically affect to the safety of the dome roof structure because the stiffness of a reinforced concrete structure is much higher than that of H beams. Thus, the number of H beams may be restricted under 60 due to a dead weight of H beams for 0.2g excitation force.

General Theory for Enhancing the Transmission Efficiency through Small Apertures (소형 개구의 투과효율 향상을 위한 일반 이론)

  • Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1113-1120
    • /
    • 2014
  • In this paper, general methods for enhancing the transmission efficiency through the small subwavelength aperture in an infinite conducting plane are considered first by use of the transmission-resonant aperture like the ridged circular aperture structure, second by employing the transmission-resonant cavity structure. In particular, the maximum transmission cross section is found to be $\frac{2G{\lambda}^2}{4{\pi}}[m^2]$ for the two structures, where G is the gain of the aperture in the output half space. As experimental works, the impedance matching characteristics are investigated for the cases that above two structures are incorporated as a potential near field microscopic probe in the waveguide end. As a complementary problem to the above transmission-resonant aperture problem, some discussions are also given on the scattering resonance by the scattering object much smaller than the wavelength. This discussion may provide a good understanding of the physics for the phenomena that the maximum scattering cross section is much larger than the physical size of the atom in atomic physics area.

Earthquake Response Analysis for Three-Story Building with Reinforced Concrete Shear Walls (3층 철근콘크리트 전단벽 구조물의 지진응답해석)

  • Rhee, Inkyu;Lee, Eun-Haeng;Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.103-110
    • /
    • 2021
  • A shake table test is conducted for the three-story reinforced concrete building structure using 0.28 g, 0.5 g, 0.75 g, and 1.0 g of seismic input motions based on the Gyeongju earthquake. Computational efforts are made in parallel to explore the mechanical details in the structure. For engineering practice, the elastic modulus of concrete and rebar in the dynamic analysis is reduced to 38% and 50%, respectively, to calibrate the structure's natural frequencies. The engineering approach to the reduced modulus of elasticity is believed to be due to the inability to specify the flexibility of the actual boundary conditions. This aspect may lead to disadvantages of nonlinear dynamic analysis that can distort local stress and strain relationships. The initial elastic modulus can be applied directly without the so-called engineering adjustment with infinite element models with spring and spring-dashpot boundary conditions. This has the advantage of imposing the system flexibility of the structure on the sub-boundary conditions of springs and damping devices to control its sensitivity in a serial arrangement. This can reflect the flexibility of realistic boundary conditions and the effects of system damping (such as the gap between a concrete footing and shake table, loosening of steel anchors, etc.) in scalar quantities. However, these spring and dashpot coefficients can only be coordinated based on experimental results, making it challenging to select the coefficients in-prior to perform an experimental test.