• Title/Summary/Keyword: G-projective module

Search Result 12, Processing Time 0.025 seconds

FINITELY GENERATED G-PROJECTIVE MODULES OVER PVMDS

  • Hu, Kui;Lim, Jung Wook;Xing, Shiqi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.803-813
    • /
    • 2020
  • Let M be a finitely generated G-projective R-module over a PVMD R. We prove that M is projective if and only if the canonical map θ : M⨂R M → HomR(HomR(M, M), R) is a surjective homomorphism. Particularly, if G-gldim(R) ⩽ ∞ and ExtiR(M, M) = 0 (i ⩾ 1), then M is projective.

GORENSTEIN PROJECTIVE DIMENSIONS OF COMPLEXES UNDER BASE CHANGE WITH RESPECT TO A SEMIDUALIZING MODULE

  • Zhang, Chunxia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.497-505
    • /
    • 2021
  • Let R → S be a ring homomorphism. The relations of Gorenstein projective dimension with respect to a semidualizing module of homologically bounded complexes between U ⊗LR X and X are considered, where X is an R-complex and U is an S-complex. Some sufficient conditions are given under which the equality ${\mathcal{GP}}_{\tilde{C}}-pd_S(S{\otimes}{L \atop R}X)={\mathcal{GP}}_C-pd_R(X)$ holds. As an application it is shown that the Auslander-Buchsbaum formula holds for GC-projective dimension.

COPURE PROJECTIVE MODULES OVER FGV-DOMAINS AND GORENSTEIN PRÜFER DOMAINS

  • Shiqi Xing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.971-983
    • /
    • 2023
  • In this paper, we prove that a domain R is an FGV-domain if every finitely generated torsion-free R-module is strongly copure projective, and a coherent domain is an FGV-domain if and only if every finitely generated torsion-free R-module is strongly copure projective. To do this, we characterize G-Prüfer domains by G-flat modules, and we prove that a domain is G-Prüfer if and only if every submodule of a projective module is G-flat. Also, we study the D + M construction of G-Prüfer domains. It is seen that there exists a non-integrally closed G-Prüfer domain that is neither Noetherian nor divisorial.

SOME ONE-DIMENSIONAL NOETHERIAN DOMAINS AND G-PROJECTIVE MODULES

  • Kui Hu;Hwankoo Kim;Dechuan Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1453-1461
    • /
    • 2023
  • Let R be a one-dimensional Noetherian domain with quotient field K and T be the integral closure of R in K. In this note we prove that if the conductor ideal (R :K T) is a nonzero prime ideal, then every finitely generated reflexive (and hence finitely generated G-projective) R-module is isomorphic to a direct sum of some ideals.

DING PROJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING MODULE

  • Zhang, Chunxia;Wang, Limin;Liu, Zhongkui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.339-356
    • /
    • 2014
  • In this paper, we introduce and discuss the notion of $D_C$-projective modules over commutative rings, where C is a semidualizing module. This extends Gillespie and Ding, Mao's notion of Ding projective modules. The properties of $D_C$-projective dimensions are also given.

ON OVERRINGS OF GORENSTEIN DEDEKIND DOMAINS

  • Hu, Kui;Wang, Fanggui;Xu, Longyu;Zhao, Songquan
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.991-1008
    • /
    • 2013
  • In this paper, we mainly discuss Gorenstein Dedekind do-mains (G-Dedekind domains for short) and their overrings. Let R be a one-dimensional Noetherian domain with quotient field K and integral closure T. Then it is proved that R is a G-Dedekind domain if and only if for any prime ideal P of R which contains ($R\;:_K\;T$), P is Gorenstein projective. We also give not only an example to show that G-Dedekind domains are not necessarily Noetherian Warfield domains, but also a definition for a special kind of domain: a 2-DVR. As an application, we prove that a Noetherian domain R is a Warfield domain if and only if for any maximal ideal M of R, $R_M$ is a 2-DVR.

DILATION OF PROJECTIVE ISOMETRIC REPRESENTATION ASSOCIATED WITH UNITARY MULTIPLIER

  • Im, Man Kyu;Ji, Un Cig;Kim, Young Yi;Park, Su Hyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.367-373
    • /
    • 2007
  • For a unital *-subalgebra of the space $\mathcal{L}^a(X)$ of all adjointable maps on a Hilbert $\mathcal{B}$-module X with a $C^*$-algebra $\mathcal{B}$, we study unitary operator (in such algebra)-valued multiplier ${\sigma}$ on a normal, generating subsemigroup S of a group G with its extension to G. A dilation of a projective isometric ${\sigma}$-representation of S is established as a projective unitary ${\rho}$-representation of G for a suitable unitary operator (in some algebra)-valued multiplier ${\rho}$ associated with the multiplier ${\sigma}$ which is explicitly constructed.

  • PDF

ON STRONGLY GORENSTEIN HEREDITARY RINGS

  • Hu, Kui;Kim, Hwankoo;Wang, Fanggui;Xu, Longyu;Zhou, Dechuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.373-382
    • /
    • 2019
  • In this note, we mainly discuss strongly Gorenstein hereditary rings. We prove that for any ring, the class of SG-projective modules and the class of G-projective modules coincide if and only if the class of SG-projective modules is closed under extension. From this we get that a ring is an SG-hereditary ring if and only if every ideal is G-projective and the class of SG-projective modules is closed under extension. We also give some examples of domains whose ideals are SG-projective.

ESSENTIAL EXACT SEQUENCES

  • Akray, Ismael;Zebari, Amin
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.469-480
    • /
    • 2020
  • Let R be a commutative ring with identity and M a unital R-module. We give a new generalization of exact sequences called e-exact sequences. A sequence $0{\rightarrow}A{\longrightarrow[20]^f}B{\longrightarrow[20]^g}C{\rightarrow}0$ is said to be e-exact if f is monic, Imf ≤e Kerg and Img ≤e C. We modify many famous theorems including exact sequences to one includes e-exact sequences like 3 × 3 lemma, four and five lemmas. Next, we prove that for torsion-free module M, the contravariant functor Hom(-, M) is left e-exact and the covariant functor M ⊗ - is right e-exact. Finally, we define e-projective module and characterize it. We show that the direct sum of R-modules is e-projective module if and only if each summand is e-projective.

GORENSTEIN-INJECTORS, GORENSTEIN-FLATORS

  • Gu, Qinqin;Zhu, Xiaosheng;Zhou, Wenping
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.691-704
    • /
    • 2010
  • Over a ring R, let $P_R$ be a finitely generated projective right R-module. Then we define the G-injector (G-projector) if $P_R$ preservers Gorenstein injective modules (Gorenstein projective modules), the Gflator if $P_R$ preservers Gorenstein flat modules. G-injector (G-flator) and G-injector are characterized focus primarily on the cases where R is a Gorenstein ring, and under this condition we also study the relations between the injector (projector, flator) and the G-injector (G-projector, G-flator). Over any ring we also give the characteristics of G-injector (G-flator) by the Gorenstein injective (Gorenstein flat) dimensions of modules.