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GORENSTEIN PROJECTIVE DIMENSIONS OF COMPLEXES

UNDER BASE CHANGE WITH RESPECT TO

A SEMIDUALIZING MODULE

Chunxia Zhang

Abstract. Let R → S be a ring homomorphism. The relations of
Gorenstein projective dimension with respect to a semidualizing mod-

ule of homologically bounded complexes between U ⊗L
R X and X are

considered, where X is an R-complex and U is an S-complex. Some suffi-
cient conditions are given under which the equality GP

C̃
-pdS(S⊗L

RX) =

GPC -pdR(X) holds. As an application it is shown that the Auslander-

Buchsbaum formula holds for GC -projective dimension.

1. Introduction

The classical theory of homological dimensions is very important to commu-
tative algebra. In particular, it is useful that there are a number of finiteness
conditions on these dimensions which characterize regular rings. For example,
if the projective dimension of each finitely generated R-module is finite, then
R is a regular ring.

Semidualizing modules (cf. Definition 6) have been considered by many au-
thors (see, for example, [4,8,9,12–15]). For any commutative noetherian ring R,
any semidualizing R-module C and any complex Z with bounded and finitely
generated homology, Christensen introduced the dimension G-dimCZ in [4],
and developed a satisfactory theory for this new invariant, which characterized
Cohen-Macaulay rings in a way one could hope for. However, Christensen’s
G-dimC(−) only works when the argument has bounded and finitely generated
homology. To circumvent this shortcoming, Holm and Jφrgensen proposed to
study a homological dimension based on a larger class of complexes: GPC-
projective dimension of X, GPC-pdRX, for every homologically right-bounded
complex X (see [8]). It was already known from [8] that for complexes with
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bounded and finitely generated homology, the GPC-pdR(−) agrees with Chris-
tensen’s G-dimC(−).

Transfer of homological properties along ring homomorphisms is a classical
field of study (see, for instance, [1,2,5,6,10,16]). The main goal of this paper is
to study the properties of GPC-projective dimensions for complexes over ring
homomorphisms.

In this paper, all rings are commutative, unital, and noetherian.

2. Ring homomorphisms and GC-projective dimensions

In this section, the Gorenstein projective dimension of complexes with re-
spect to a semidualizing module is considered. First, we recall the following
definitions for later use.

Definition 1. Let ϕ : R → S be a ring homomorphism. ϕ is said to be of
finite flat dimension if flat dimension of S is finite as an R-module. We say
ϕ is faithfully flat if S is a faithfully flat R-module (that is, SR satisfies the
condition that 0 → A → B is an exact sequence of R-modules if and only
if 0 → S ⊗R A → S ⊗R B is exact). We call ϕ finite if it makes S a finite
R-module, and we say that ϕ is local if R and S are local rings and ϕ(m) ⊆ n,
where m and n are the maximal ideals of R and S.

Definition 2. An R-complex X is a sequence of R-modules Xi and R-linear
maps ∂Xi : Xi → Xi−1, i ∈ Z. If Xi = 0 for i 6= 0 we identify X with the module
in degree 0, and an R-module M is thought of as a complex 0→M → 0, with
M in degree 0. The homological position of a complex is captured by the
numbers supremum and infimum defined by supX = sup{i ∈ Z |Hi(X) 6= 0}
and inf X = inf{i ∈ Z |Hi(X) 6= 0}. By convention supX = −∞ and inf X =
∞ if X ' 0.

The category of R-complexes is denoted by C(R), and we use subscripts @,
A and � to denote boundedness conditions. For example, C�(R) is the full
subcategory of C(R) of bounded complexes.

Definition 3. The derived category of the category of R-modules is the cat-
egory of R-complexes localized at the class of all quasi-isomorphisms, it is
denoted by D(R). The symbol “'” is used to designate isomorphisms in D(R)
and quasi-isomorphisms in C(R), and we use subscripts @, A and � to denote
homological boundedness conditions. Superscript “f” signifies that the homol-

ogy is degreewise finitely generated. Thus, Df
A(R) denotes the full subcategory

of D(R) of homologically right-bounded complexes with finitely generated ho-
mology modules.

Definition 4. The left derived functor of the tensor product functor of R-
complexes is denoted by −⊗L

R−, and RHomR(−,−) denotes the right derived
functor of the homomorphism functor of complexes. For X,Y ∈ D(R) and i ∈
Z, we set TorRi (X,Y ) = Hi(X ⊗L

R Y ) and ExtiR(X,Y ) = H−i(RHomR(X,Y )).
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For modules X and Y this agrees with the notation of classical homological
algebra.

Definition 5. A complex X ∈ D�(R) is said to be of finite projective (or
flat) dimension if X ' U , where U is a complex of projective (or flat) modules
and Ui = 0 for |i| � 0. By P(R) and F(R) we denote the full subcategories
of D�(R) whose objects are complexes of finite projective and flat dimension,
respectively. Note that P0(R) and F0(R) are equivalent, respectively, to the
full subcategories of modules of finite projective or flat dimension. We use
two-letter abbreviations pd, fd for the homological dimensions.

Definition 6. A finitely generated R-module C is semidualizing if
(a) The natural homothety morphism R→ HomR(C,C) is an isomorphism,

(b) Ext≥1R (C,C) = 0.
Let C be a semidualizing R-module. Set

PC(R) = the subcategory of modules C ⊗R P where P is R-projective,

FC(R) = the subcategory of modules C ⊗R F where F is R-flat.

Modules in PC(R) and FC(R) are called C-projective and C-flat, respectively.

A free R-module of rank one is semidualizing. If R admits a dualizing module
D, then D is semidualizing.

Setting C = R in the definition above we see that PR(R) and FR(R) are
the classes of ordinary projective and flat R-modules, which we usually denote
P(R) and F(R), respectively.

Definition 7. Let X be a class of R-modules and M an R-module. An X -
resolution of M is a complex of R-modules in X of the form

X = · · · → Xn → Xn−1 → · · · → X1 → X0 → 0

such that H0(X) ∼= M and Hn(X) = 0 for n ≥ 1. The X -projective dimension
of M is the quantity

X -pdR(M) = inf{sup{n ≥ 0 | Xn 6= 0} | X is an X -resolution of M}.
In particular, one has X -pdR(0) = −∞. The modules of X -projective dimen-
sion 0 are the nonzero modules of X .

The PC-projective dimension and FC-projective dimension of M are defined
as above in [13], which are called C-projective and C-flat dimension of M ,
respectively.

Lemma 2.1 ([7, Lem. 3.2]). Let ϕ : R→ S be a ring homomorphism of finite

flat dimension and C a semidualizing R-module. Then C̃ = C ⊗R S is a
semidualizing S-module.

Definition 8 ([15]). Let C be a semidualizing R-module.
A complete PPC-resolution is a complex X of R-modules satisfying the

following:
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(1) X is exact and HomR(−,PC(R))-exact, and
(2) Xi is projective if i ≥ 0 and Xi is C-projective if i < 0.
An R-module M is GC-projective if there exists a complete PPC-resolution

X such that M ∼= Coker∂X1 , in which case X is a complete PPC-resolution of
M .

We set

GPC(R) = the subcategory of GC-projective R-modules.

In the special case C = R, we set GPR(R) = GP(R), and GPR(R)-pdR(−) =
GpdR(−).

Example 2.2 ([8, Exam. 2.8]). Projective and C-projective R-modules are
GC-projective.

Remark 2.3 ([8]). An R-module M is GC-projective if and only if

(P1) Ext≥1R (M,C ⊗R P ) = 0 for any projective R-module P , and
(P2) there exist projective R-modules P−1, P−2, · · · together with an exact

sequence:
X = 0→M → C ⊗R P−1 → C ⊗R P−2 → · · ·

such that this sequence stays exact when we apply the functor HomR(−, C ⊗R

P ) to it for any projective R-module P (i.e., M admits a proper PC(R)-
coresolution).

By Example 2.2, there exists for every homologically bounded below complex
X a bounded below complex A of GC-projective R-modules with A ' X in
D(R) (as one could take A to be a projective resolution of X). Every such A
is called a GC-projective resolution of X.

We proceed by recalling the definition of GC-projective dimensions from [17].

Definition 9. The GC-projective dimension, GPC-pdR(X), of X ∈ DA(R) is
defined as

GPC-pdR(X) = inf{sup{l ∈ Z | Al 6= 0} | X ' A ∈ CGPC
A (R)}.

For modules, this dimension above agree with Definition 7, see [17].

The following result is one of the main results in this paper.

Theorem 2.4. Let ϕ : R→ S be a ring homomorphism of finite flat dimension.
Assume that X ∈ D�(R). If U is a complex of finite projective dimension, i.e.,
U ∈ P(S), then

GPC̃-pdS(U ⊗L
R X) ≤ GPC-pdR(X) + pdSU

provided F0(S) ⊆ P0(R).

Proof. If U ' 0 or X ' 0, the GPC̃-pdS(U ⊗L
R X) = −∞ and so the result is

clear. If GPC-pdR(X) = ∞, then there is nothing to do. So we assume that
U 6' 0 and X 6' 0 and GPC-pdR(X) < ∞. Denote GPC-pdR(X) = g ∈ Z.

Then there exists a complex A ∈ CGPC

� (R) which is equivalent to X in D(R)
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and has Al = 0 for l > g by [17, Thm. 3.5]. Since U ∈ P(S), there exists
a bounded complex P of projective S-modules such that U ' P and Pl = 0
when l < v = inf U or l > u = pdSU . It is easy to see that U and P are
quasi-isomorphisms as complexes of R-modules.

Note that U ⊗L
R X is represented by the complex P ⊗R A by [17, Cor. 2.14]

and for any l ∈ Z,

(2.1) (P ⊗R A)l = ⊕t∈ZPt ⊗R Al−t = ⊕v≤t≤u,l−t≤gPt ⊗R Al−t

is a GC̃-projective S-module by [7, Prop. 4.12], and direct sums of GC̃-projec-

tive S-modules are GC̃-projective by [15, Prop. 2.4]. So P ⊗R A ∈ CGPC̃ (S).
Furthermore, it is easy to see that P ⊗R A is bounded: by (2.1), we have

(P ⊗R A)l = 0 for g + u < l < g + v. That is, P ⊗R A ∈ CGPC̃

� (S), and

therefore, GPC̃-pdS(U ⊗L
R X) ≤ g + u = GPC-pdR(X) + pdSU as desired. �

Corollary 2.5. Let ϕ : R → S be a ring homomorphism of finite flat di-
mension, and assume that dimR is finite. For every X ∈ D�(R), there is an
inequality

GPC̃-pdS(S ⊗L
R X) ≤ GPC-pdR(X).

Proof. Note that under the condition that ϕ : R→ S is a ring homomorphism
of finite flat dimension and dimR is finite, one has every S-module of finite flat
dimension is of finite projective dimension over R via ϕ. Now the result follows
from Theorem 2.4. �

Next, we consider when the equality in Corollary 2.5 holds. To this end we
need the next two lemmas.

Lemma 2.6 ([16, Lem. 3.2]). Let ϕ : R → S be a faithfully flat finite ring
homomorphism. If P is a projective R-module, then it is a direct summand (as
an R-module) of the projective S-module S ⊗R P .

Lemma 2.7. Let ϕ : R → S be a faithfully flat ring homomorphism. Assume
that dimR is finite. Then an R-module M is GC-projective if and only if
S ⊗R M is a GC̃-projective S-module and ExtiR(M,C ⊗R P ) = 0 for all i > 0
and all projective R-modules P .

Proof. The necessity follows from Remark 2.3 and [7, Prop. 4.12(3)]. The suf-
ficiency follows from [18, Thm. 3.10, Cor. 3.11]. �

Note that if ϕ : R → S is a faithfully flat ring homomorphism and dimS is
finite, one has dimR is finite. Then we have:

Theorem 2.8. Let ϕ : R → S be a faithfully flat finite ring homomorphism.
If dimS is finite, then for every X ∈ D�(R), there is an equality

GPC̃-pdS(S ⊗L
R X) = GPC-pdR(X).
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Proof. By Corollary 2.5, it is enough to show that

GPC-pdR(X) ≤ GPC̃-pdS(S ⊗L
R X).

Assume that GPC̃-pdS(S⊗L
RX) = g <∞. Then by [17, Thm. 3.5], sup(S⊗L

R

X) ≤ g and for every bounded complex A ' S ⊗L
R X of GC̃-projective S-

modules, the module CA
g is GC̃-projective.

Consider a GC-projective resolution G
'→ X over R. Then by [17, Cor. 2.14],

S ⊗L
R X ' S ⊗R G. Clearly, S ⊗R G is a complex of GC̃-projective S-modules

by [7, Cor. 4.17]. Then S ⊗R G is a GC̃-projective resolution of S ⊗R X, and
so sup(S ⊗R G) ≤ g. Hence the sequence

· · · → S ⊗R Gg+2 → S ⊗R Gg+1 → S ⊗R Gg

is exact. Clearly, it is exact as a sequence of R-modules. Since S is a faithfully
flat R-module, the sequence

· · · → Gg+2 → Gg+1 → Gg

is exact. Consequently, one has supG ≤ g and so supX ≤ g.
Next, we prove that CG

g is GC-projective. For i > g, one has Hi(S⊗RG) = 0.

Right-exactness of the functor S ⊗R − yields an isomorphism Coker∂S⊗RG
n

∼=
S⊗RCoker∂Gn for each n. SetK = CG

g . By [17, Thm. 3.5], one has the S-module

CS⊗RG
g

∼= S⊗RK is GC̃-projective. For every projective R-module P , one has
P is a direct summand of a projective S-module Q by Lemma 2.6. Let P be a

projective resolution of K. For all i ≥ 1, one has C̃ ⊗S Q ∼= (C ⊗R S)⊗S Q ∼=
C ⊗R Q, then we have

ExtiR(K,C ⊗R Q) = H−i(HomR(P, C ⊗R Q))

= H−i(HomR(P,HomS(S, C̃ ⊗S Q)))

= H−i(HomS(S ⊗R P, C̃ ⊗S Q))

= ExtiS(S ⊗R K, C̃ ⊗S Q)

= 0.

Therefor, one has ExtiR(K,C⊗RP ) = 0 and so K is a GC-projective R-module
by Lemma 2.7. It follows from [17, Thm. 3.5] that GPC-pdR(X) <∞.

To prove the equality, using [17, Thm. 3.5], choose a projective R-module
Q such that GPC-pdR(X) = − inf RHomR(X,C ⊗R Q). Since Q is a direct
summand of a projective S-module Q by Lemma 2.6, hence one has

GPC̃-pdS(S ⊗L
R X) ≥ − inf RHomS(S ⊗L

R X, C̃ ⊗S Q)

= − inf RHomR(X,RHomS(S, C̃ ⊗S Q))

= − inf RHomR(X, C̃ ⊗S Q)

≥ − inf RHomR(X, C̃ ⊗S Q)

= − inf RHomR(X,C ⊗R Q)
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= GPC-pdR(X).

The first step is by [17, Thm. 3.5], the second one is from Hom-tensor ad-
jointness, the fourth one follows from Q is a direct summand of a projective
S-module Q and the last one comes from the choice of Q. This completes the
proof. �

3. An application

Let (R,m, k) be a local ring. Recall that the depth of an R-complex X is
defined as

depthRX = − sup RHomR(k,X).

The following equality is well-known as the Auslander-Buchsbaum formula: for
any X ∈ Pf (R), there is an equality

(3.1) pdRX = depthR− depthRX.

For homologically bounded complex with finite homology, for finite modules
in particular, the GC-projective dimension coincides with Christensen’s notion
of GC-dimension; see [8, Prop. 3.1]. Then we have the next equality, which is
the Auslander-Buchsbaum formula of GC-projective dimension.

Theorem 3.1. Let R be local and X ∈ Df
�(R). If GC-dimRX is finite, then

there is an equality

(3.2) GC-dimRX = depthR− depthRX.

Proof. By [8, Thm. 2.6], GC-dimRX = GpdR∝CX, where R ∝ C is the triv-
ial extension of R by C. On the other hand GpdR∝CX = depthR ∝ C −
depthR∝CX by [4, Thm. 3.14] since GpdR∝CX <∞. Note that

depthR ∝ C = min{depthR,depthRC} = depthR

since depthRC = depthR by [12, Thm. 2.2.6] and depthR∝CX = depthRX
by [3, Exercise 1.2.26]. �

Then we have the following result for modules, and which recovers [11,
Thm. 3.12] and [14, Thm. 2.5].

Corollary 3.2. Let R be a local ring. Then for every finitely generated R-
module M 6= 0 of finite GC-dimension, there is an equality

GC-dimRM = depthR− depthRM.

Corollary 3.3. Let ϕ : R → S be a local ring homomorphism of finite flat

dimension. Assume that X ∈ Df
�(R) with GC-dimRX finite and U ∈ Pf (S),

then the following equality holds

GC-dimS(U ⊗L
R X) = GC-dimRX + pdSU.
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Proof. By Theorem 2.4, one hasGC-dimS(U⊗L
RX) is finite. By hypothesis, it is

not hard to see that U⊗L
RX ∈ D

f
�(R) and U ∈ P(R). SinceGC-dimRX is finite,

the complex X is homologically bounded above. Now the first equality in the
computation below follows from (3.2), the second one follows by [5, Thm. 6.2(i)]
and the last one follows from (3.2) and the Auslander-Buchsbaum formula (3.1).

GC-dimS(U ⊗L
R X) = depthS − depthS(U ⊗L

R X)

= depthS − depthSU − depthRX + depthR

= GC-dimRX + pdSU. �
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