• Title/Summary/Keyword: G-Acceleration

Search Result 603, Processing Time 0.022 seconds

Study on flexure angle measurement of ring laser gryo and the improvement of flexure error (링레이저 자이로의 플렉셔 각도측정과 플렉셔 오차개선 연구)

  • 조민식;김광진;김정주
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Flexure measurement of ring laser gyro was investigated by using an interferometer. A two-beam interferometer of Fiezo-fringe pattern obtained the flexure angle in 1-gravity acceleration and the higher acceleration environments. These environments were made with the addition of dummy mass to the ring laser gyro axis. The flexure angle change for 1-gravity acceleration change was measured as 2.37 arcsec/g with low repeatability error of 0.01 arcsec/g. The laser navigation system consisting of 3 flexure-reduced ring laser gyros showed the improvement of flexure error.

Acceleration Amplification Analysis according to Changes in Laminar Shear Box Boundary Conditions (연성토조의 경계조건 변화에 따른 가속도 증폭 분석)

  • Jeong, Sugeun;Jin, Yong;Park, Kyungho;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.143-155
    • /
    • 2022
  • In this study, the response acceleration amplification according to different conditions was analyzed by changing the boundary condition of the soil called LSB (Laminar Shear Box), which is placed on a 1 g shaking table for earthquake simulation experiments. Experiments were carried out with different boundary conditions by fixing both sides of the LSB, and two samples were tested by installing an accelerometer at the same location. In addition, using DEEPSOIL v7 program, a one-dimensional ground response analysis was performed to compare and analyze with the free field condition. As a result, it was confirmed that the acceleration was amplified as it went from the lower layer to the upper layer, and as a result of comparing it with the ground response analysis, it was confirmed that it appeared similar to the analysis under the free field condition. As a result of the SA (Spectrum acceleration) analysis, a result similar to that of the ground response analysis was obtained, and in the case of fixing, it was confirmed that the PSA (Peak Spectral Acceleration) was further amplified.

Earthquake Amplification for Various Multi-Layer Ground Models (다양한 다층 지반모형에 대한 지진동 증폭)

  • Sugeun Jeong;Hoyeon Kim;Daeheyon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.293-305
    • /
    • 2023
  • Three ground models are analyzed using a 1g shaking table and laminar shear box (LSB) to investigate the impact of the ground structure on seismic wave amplification during earthquakes. Multi-layer horizontal, embankment, and basin ground models are selected for this investigation, with each model being divided into dense and loose ground layers, Accelerometers are installed during the construction of each ground model to capture any seismic wave amplification owing th the propagation of an artificial seismic wave, sine wave sweep, and 10-Hz sine wave through a given ground model. The amplification of the tested seismic waves is analyzed using the observed peak ground acceleration and spectrum acceleration. The observed acceleration amplification in the multi-layer horizontal ground model is significantly higher the seismic waves that propagated across the dense ground-loose ground boundary compared with those that only propagated through the dense ground. Furthermore, the observed acceleration amplification gradually increases in the central part of the multi-layer embankment and basin models for the seismic waves that propagated across the dense ground-loose ground boundary.

Suggestion of standard color code for displaying ground acceleration (지진가속도 간의 칼라코드 표준화)

  • 지헌철;전정수;신진수;이희일;박정호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.61-71
    • /
    • 2002
  • Color-code imaging should be one of the best display tools for the quick perception of both damage area and its intensity, In this study we proposed the standard color code corresponding to maximum observed acceleration value. Since the acceleration value changes with frequency contents, we suggested to limit the frequency band less than 10Hz. The background considerations of this limitation, magnitude vs. dominant frequency, natural characteristics of artificial noises and the relationship between velocity and acceleration, were reviewed in detail. The standard of color code was assigned from 0.001%g to 20%g based on the possible earthquakes at Korean peninsula and the color imaging given by RGB value was shown to be very consistent, irrespective of hardware configuration.

  • PDF

The Evaluation of Seismic Performance of Dam By Shaking Table Tests (진동대시험을 이용한 댐의 내진성능평가)

  • Hwang, Seong-Chun;Oh, Byung-Hyun;Sim, Hyung-Seob;Kang, Bo-Soon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.110-117
    • /
    • 2005
  • This paper deals the shaking table tests with 1/100 scaled model followed by Scott & Iai(1989)'s similitude law for OO dam main desging section to understand nonlinear behavior characteristics of concrete dam body by earthquake wave. As earthquake wave, Hachinohe and Elcentro waves were used and acceleration and displacements are measured to analyze behaviors of dam body. For ground maximum acceleration range ($0.3^{\sim}0.9g$), the results showed linear behavior regardless of ground maximum acceleration and secured safety of structure. To analyze the behavior of dam after tension cracking, 3cm-notch was placed at the critical section of over-flowing section. As results of applying Hachinohe wave(0.8g), Even though tension cracks were formed at over-flowing section by Hachinohe wave(0.8g), it showed that the dam is stable for supporting upper stream part of water tank of dam.

  • PDF

A Study on the Dynamic Behavior of Concrete Dam by Shaking Table Tests (진동대 시험을 이용한 콘크리트 댐의 동적거동 특성 연구)

  • Hwang, Seong-chun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.806-812
    • /
    • 2005
  • This paper adresses the shaking table tests with 1/100 scaled model followed similitude law for OOdam main designing section to understand nonlinear behavior characteristics of concrete dam body by ground motion. As earthquake wave, Hachinohe and El Centre waves were used and acceleration and displacements are measured to analyze behaviors of dam body. For maximum ground acceleration range $(0.3\~0.9 g)$, the results showed linear behavior regardless of maximum 9round acceleration and secured safety of structure. To analyze the behavior of dam after tension cracking, 3 cm-notch was placed at the critical section of over-flowing section. As results of applying Hachinohe wave(0.8 g), Even though tension cracks were formed at over-flowing section by Hachinohe wave(0.8 g), it showed that the dam is stable for supporting upper stream Part of water tank of dam.

A Feasibility Study of Seismic Isolation for Wolsong Reactor Building

  • Kim, Kang-Soo;Kim, Tae-Wan;Lee, Jeong-Yoon
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.83-90
    • /
    • 1998
  • To predict effects of seismic isolation, seismic isolation bearings were applied to the Wolsong reactor building and the analytical study was performed. For this study, the Wolsong reactor building was modeled using lumped masses and beam elements. Design Basis Earthquake with a ground acceleration of 0.2g was applied. And then, the behavior of the isolated structure was compared with that of the unisolated structure. The horizontal response acceleration at the top of the unisolated reactor building was 0.99g, while that of the isolated one was 0.14g(15% damping) and the acceleration response along the height of the structure was constant. The maximum displacement of the unisolated structure was 8.3mm, while that of the isolated structure was 66mm. The application of isolation bearings on the reactor building reduces seismic loads but increases the displacement of the structure on a large scale. Therefore, when using isolation bearings, the reactor building and BOP should be located on a common mat to cover the large displcement.

  • PDF

Acceleration Behavior of Rock Slope by Shaking Table Test (진동대 실험을 이용한 암반비탈면의 가속도 특성)

  • Kang, Jong-Chul;Yoon, Won-Sub;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.841-848
    • /
    • 2021
  • This study investigated the acceleration characteristics of rock slopes when earthquakes, which have not been studied much in Korea, occur. The rock slope was modeled with a similar raw of 1/20 in consideration of the height(10m), roughness, strength, and the joint dips(20°). After the completion of the model, a shaking table tests was conducted according to the magnitude of the acceleration and the type of seismic wave. The maximum acceleration was greater in the short-period seismic wave than in the long-period seismic wave, and the maximum acceleration was larger in the small acceleration. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. In the event of an earthquake smaller than the domestic earthquake-resistant maximum design acceleration(0.154g), safety management of the rock slope was required.

Design and Performance Analysis of Lateral Type MEMS Inertial Switch (수평 구동형 MEMS 관성 스위치 설계 및 성능해석)

  • Gim, Hakseong;Jang, Seung-gyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.523-528
    • /
    • 2020
  • A lateral type MEMS inertial switch was designed on the same principle as spring-mass system. The MEMS switch is used for arming mechanism of the arm-fire device by sensing the applied acceleration. We analyzed the switching capability of the MEMS switch under various acceleration conditions via performance model. Simulation results showed that the MEMS switch works very well at 10 g when the applied acceleration slope does not exceed 10 g/msec. On the other hand, the threshold operating acceleration level simulation exceeded the requirement (10±2 g) due to the width and length of the spring by considering 10% tolerance of the design values. Design modification of doubling the width of the spring, which is difficult to reduce less than 10% tolerance in fabrication process, was proposed after confirming the simulation results comply the requirement.

Numerical simulation of shaking table test on concrete gravity dam using plastic damage model

  • Phansri, B.;Charoenwongmit, S.;Warnitchai, P.;Shin, D.H.;Park, K.H.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.481-497
    • /
    • 2010
  • The shaking table tests were conducted on two small-scale models (Model 1 and Model 2) to examine the earthquake-induced damage of a concrete gravity dam, which has been planned for the construction with the recommendation of the peak ground acceleration of the maximum credible earthquake of 0.42 g. This study deals with the numerical simulation of shaking table tests for two smallscale dam models. The plastic damage constitutive model is used to simulate the crack/damage behavior of the bentonite-concrete mixture material. The numerical results of the maximum failure acceleration and the crack/damage propagation are compared with experimental results. Numerical results of Model 1 showed similar crack/damage propagation pattern with experimental results, while for Model 2 the similar pattern was obtained by considering the modulus of elasticity of the first and second natural frequencies. The crack/damage initiated at the changing point in the downstream side and then propagated toward the upstream side. Crack/damage accumulation occurred in the neck area at acceleration amplitudes of around 0.55 g~0.60 g and 0.65 g~0.675 g for Model 1 and Model 2, respectively.