• 제목/요약/키워드: G protein-coupled receptor (GPCR)

검색결과 60건 처리시간 0.027초

Aequorin Based Functional Assessment of the Melanin Concentrating Hormone Receptor by Intracellular Calcium Mobilization

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • 제18권2호
    • /
    • pp.152-158
    • /
    • 2010
  • Melanin concentrating hormone is a neuropeptide highly expressed in the brain that regulates several physiological functions mediated by receptors in the G-protein coupled receptor family, especially plays an important role in the complex regulation of energy balance and body weight mediated by the melanin concentrating hormone receptor subtype 1 (MCH1). Compelling pharmacological evidence implicating MCH1 signaling in the regulation of food intake and energy expenditure has generated a great deal of interest by pharmaceutical companies as MCH1 antagonists may have potential therapeutic benefit in the treatment of obesity and metabolic syndrome. Although fluorescence-based calcium mobilization assay platform has been one of the most widely accepted tools for receptor research and drug discovery, fluorescence interference and shallow assay window limit their application in high throughput screening and have led to a growing interest in alternative, luminescence-based technologies. Herein, a luminescence-based functional assay system for the MCH1 receptor was developed and validated with the mitochondrial targeted aequorin. Aequorin based functional assay system for MCH1 presented excellent Z' factor (0.8983) and high signal-to-noise ratio (141.9). The nonpeptide MCH1 receptor antagonist, SNAP 7941 and GSK 803430, exhibited $IC_{50}$ values of 0.62 ${\pm}$ 0.11 and 12.29 ${\pm}$ 2.31 nM with excellent correlation coefficient. These results suggest that the aequorin based assay system for MCH1 is a strong alternative to the traditional GPCR related tools such as radioligand binding experiments and fluorescence functional determinations for the compound screening and receptor research.

Computational Analysis of the 3-D structure of Human GPR87 Protein: Implications for Structure-Based Drug Design

  • Rani, Mukta;Nischal, Anuradha;Sahoo, Ganesh Chandra;Khattri, Sanjay
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7473-7482
    • /
    • 2013
  • The G-protein coupled receptor 87 (GPR87) is a recently discovered orphan GPCR which means that the search of their endogenous ligands has been a novel challenge. GPR87 has been shown to be overexpressed in squamous cell carcinomas (SCCs) or adenocarcinomas in lungs and bladder. The 3D structure of GPR87 was here modeled using two templates (2VT4 and 2ZIY) by a threading method. Functional assignment of GPR87 by SVM revealed that along with transporter activity, various novel functions were predicted. The 3D structure was further validated by comparison with structural features of the templates through Verify-3D, ProSA and ERRAT for determining correct stereochemical parameters. The resulting model was evaluated by Ramachandran plot and good 3D structure compatibility was evidenced by DOPE score. Molecular dynamics simulation and solvation of protein were studied through explicit spherical boundaries with a harmonic restraint membrane water system. A DRY-motif (Asp-Arg-Tyr sequence) was found at the end of transmembrane helix3, where GPCR binds and thus activation of signals is transduced. In a search for better inhibitors of GPR87, in silico modification of some substrate ligands was carried out to form polar interactions with Arg115 and Lys296. Thus, this study provides early insights into the structure of a major drug target for SCCs.

Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review

  • Cho, Hee Jin;Koo, JaeHyung
    • BMB Reports
    • /
    • 제54권12호
    • /
    • pp.601-607
    • /
    • 2021
  • Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.

The GABAB receptor associates with regulators of G-protein signaling 4 protein in the mouse prefrontal cortex and hypothalamus

  • Kim, Gyeongwha;Jung, Soonwoong;Son, Hyeonwi;Kim, Sujeong;Choi, Jungil;Lee, Dong Hoon;Roh, Gu Seob;Kang, Sang Soo;Cho, Gyeong Jae;Choi, Wan Sung;Kim, Hyun Joon
    • BMB Reports
    • /
    • 제47권6호
    • /
    • pp.324-329
    • /
    • 2014
  • Regulators of G-protein signaling (RGS) proteins regulate certain G-protein-coupled receptor (GPCR)-mediated signaling pathways. The GABAB receptor ($GABA_BR$) is a GPCR that plays a role in the stress response. Previous studies indicate that acute immobilization stress (AIS) decreases RGS4 in the prefrontal cortex (PFC) and hypothalamus (HY) and suggest the possibility of a signal complex composed of RGS4 and $GABA_BR$. Therefore, in the present study, we tested whether RGS4 associates with $GABA_BR$ in these brain regions. We found the co-localization of RGS4 and $GABA_BR$ subtypes in the PFC and HY using double immunohistochemistry and confirmed a direct association between $GABA_{B2}R$ and RGS4 proteins using co-immunoprecipitation. Furthermore, we found that AIS decreased the amount of RGS4 bound to $GABA_{B2}R$ and the number of double-positive cells. These results indicate that $GABA_BR$ forms a signal complex with RGS4 and suggests that RGS4 is a regulator of $GABA_BR$.

GPR78 promotes lung cancer cell migration and metastasis by activation of Gαq-Rho GTPase pathway

  • Dong, Dan-Dan;Zhou, Hui;Li, Gao
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.623-628
    • /
    • 2016
  • GPR78 is an orphan G-protein coupled receptor (GPCR) that is predominantly expressed in human brain tissues. Currently, the function of GPR78 is unknown. This study revealed that GPR78 was expressed in lung cancer cells and functioned as a novel regulator of lung cancer cell migration and metastasis. We found that knockdown of GPR78 in lung cancer cells suppressed cell migration. Moreover, GPR78 modulated the formation of actin stress fibers in A549 cells, in a RhoA- and Rac1-dependent manner. At the molecular level, GPR78 regulated cell motility through the activation of $G{\alpha}q$-RhoA/Rac1 pathway. We further demonstrated that in vivo, the knockdown of GPR78 inhibited lung cancer cell metastasis. These findings suggest that GPR78 is a novel regulator for lung cancer metastasis and may serve as a potential drug target against metastatic human lung cancer.

Molecular identification and characterization of Lumpy skin disease virus emergence from cattle in the northeastern part of Thailand

  • Seerintra, Tossapol;Saraphol, Bhuripit;Wankaew, Sitthichai;Piratae, Supawadee
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.73.1-73.8
    • /
    • 2022
  • Background: Lumpy skin disease (LSD), a disease transmitted by direct and indirect contact with infected cattle, is caused by the Lumpy skin disease virus (LSDV). The disease affects cattle herds in Africa, Europe, and Asia. The clinical signs of LSD range from mild to the appearance of nodules and lesions in the skin leading to severe symptoms that are sometimes fatal with significant livestock economic losses. Objectives: This study aimed to characterize LSDV strains in the blood of infected cattle in Thailand based on the GPCR gene and determine the phylogenetic relationship of LSDV Thailand isolates with published sequences available in the database. Methods: In total, the blood samples of 120 cattle were collected from different farms in four provinces in the northeastern part of Thailand, and the occurrence of LSDV was examined by PCR based on the P32 antigen gene. The genetic diversity of LSDV based on the GPCR gene was analyzed. Results: Polymerase chain reaction assays based on the P32 antigen gene showed that 4.17% (5/120) were positive for LSDV. All positive blood samples were amplified successfully for the GPCR gene. Phylogenetic analysis showed that LSDV Thailand isolates clustered together with LSDVs from China and Russia. Conclusions: The LSD outbreak in Thailand was confirmed, and a phylogenetic tree was constructed to infer the branching pattern of the GPCR gene from the presence of LSDV in Thailand. This is the first report on the molecular characterization of LSDV in cattle in Thailand.

CHANGING OF RGS TRANSCRIPTS LEVELS BY LOW-DOSE-RATE IONIZING RADIATION IN MOUSE TESTIS

  • Kim, Tae-Hwan;Baik, Ji Sue;Heo, Kyu;Kim, Joong Sun;Lee, Ki Ja;Rhee, Man Hee;Kim, Sung Dae
    • Journal of Radiation Protection and Research
    • /
    • 제40권3호
    • /
    • pp.187-193
    • /
    • 2015
  • Deleterious effects of high dose radiation exposure with high-dose-rate are unarguable, but they are still controversial in low-dose-rate. The regulator of G-protein signaling (RGS) is a negative regulator of G protein-coupled receptor (GPCR) signaling. In addition, it is reported that irradiation stress led to GPCR-mediated mitogen-activated protein kinase (MAPK) and phosphotidylinositol 3-kinase (PI3-k) signaling. The RGS mRNA expression profiles by whole body radiation with low-dose-rate has not yet been explored. In the present study, we, therefore, examined which RGS was modulated by the whole body radiation with low-dose-rate ($3.49mGy{\cdot}h^{-1}$). Among 16 RGS expression tested, RGS6, RGS13 and RGS16 mRNA were down-regulated by low-dose-rate irradiation. This is the first report that whole body radiation with low-dose-rate can modulate the different RGS expression levels. These results are expected to reveal the potential target and/or the biomarker proteins associated with male testis toxicity induced by low-dose-rate irradiation, which might contribute to understanding the mechanism beyond the testis toxicity.

Structural studies of serotonin receptor family

  • Apeksha Parajulee;Kuglae Kim
    • BMB Reports
    • /
    • 제56권10호
    • /
    • pp.527-536
    • /
    • 2023
  • Serotonin receptors, also known as 5-HT receptors, belong to the G protein-coupled receptors (GPCRs) superfamily. They mediate the effects of serotonin, a neurotransmitter that plays a key role in a wide range of functions including mood regulation, cognition and appetite. The functions of serotonin are mediated by a family of 5-HT receptors including 12 GPCRs belonging to six major families: 5-HT1, 5-HT2, 5-HT4, 5-HT5, 5-HT6 and 5-HT7. Despite their distinct characteristics and functions, these receptors' subtypes share common structural features and signaling mechanisms. Understanding the structure, functions and pharmacology of the serotonin receptor family is essential for unraveling the complexities of serotonin signaling and developing targeted therapeutics for neuropsychiatric disorders. However, developing drugs that selectively target specific receptor subtypes is challenging due to the structural similarities in their orthosteric binding sites. This review focuses on the recent advancements in the structural studies of 5-HT receptors, highlighting the key structural features of each subtype and shedding light on their potential as targets for mental health and neurological disorders (such as depression, anxiety, schizophrenia, and migraine) drugs.

GPR88 효현제의 전처리에 의한 뇌졸중후 뇌손상 감소효과 연구 (Pretreatment with GPR88 Agonist Attenuates Postischemic Brain Injury in a Stroke Mouse Model)

  • 이서연;박정화;김민재;최병태;신화경
    • 생명과학회지
    • /
    • 제30권11호
    • /
    • pp.939-946
    • /
    • 2020
  • 뇌졸중은 전 세계적으로 신경계 장애를 일으키는 주요 원인 중 하나이며, 뇌졸중 환자는 다양한 운동, 인지 및 정신 장애를 나타낸다. GPR88은 orphan G protein coupled receptor이며 striatal medium spiny neurons에서 높게 발현이 되며, GPR88이 결손이 된 경우 motor coordination과 motor learning에 문제가 발생하게 된다. 본 연구에서는 Western blot 및 real-time PCR을 사용하여 허혈성 마우스 모델에서 GPR88 발현이 감소함을 발견 하였다. 또한, 뇌에서 유래한 세 가지 유형의 세포들, 뇌혈관내피세포(brain microvascular endothelial cells), 미세 아교세포(microglial cells) 및 신경 세포들에서 GPR88의 발현정도를 확인한 결과, HT22 신경 세포에서 GPR88의 발현이 가장 높음을 관찰하였고, 뇌졸중과 유사한 실험조건인 oxygen glucose deprivation (OGD) 조건에 배양한 HT22 신경세포에서 GPR88의 발현이 감소하였다. 또한 GPR88 효현제인 RTI-13951-33 (10 mg/kg)을 전처리후에 뇌허혈을 유발하였을 때, infarct volume의 감소, vestibular-motor function 및 neurological score의 개선효과를 관찰할 수 있었다. 이러한 결과는 GPR88이 허혈성 뇌졸중을 포함한 CNS 질환의 치료를 위한 잠재적인 약물표적이 될 수 있음을 제시한다.

Expression Analysis of Visual Arrestin gene during Ocular Development of Olive Flounder (Paralichthys olivaceus)

  • Yang, Hyun;Lee, Young Mee;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권3호
    • /
    • pp.231-240
    • /
    • 2013
  • Olive flounder (Paralichthys olivaceus) is one of the commercial important flatfish species in Korea. The ocular signal transduction pathway is important in newly hatched flounders because it is closely involved in the initial feeding phase thus essential for survival during the juvenile period. However, the study of gene expression during ocular development is incomplete in olive flounder. Therefore we examined the expression analysis of specifically induced genes during the development of the visual system in newly hatched flounders. We searched ocular development-involved gene in the database of expressed sequence tags (ESTs) from olive flounder eye and this gene similar to arrestin with a partial sequence homology. Microscopic observation of retinal formation corresponded with the time of expression of the arrestin gene in the developmental stage. These results suggest that arrestin plays a vital role in the visual signal transduction pathway of the retina during ocular development. The expression of arrestin was strong in the ocular system during the entirety of the development stages. Our findings regarding arrestin have important implications with respect to its biological role and evolution of G-protein coupled receptor (GPCR) signaling in olive flounder. Further studies are required on the GPCR-mediated signaling pathway and to decipher the functional role of arrestin.