• Title/Summary/Keyword: G code

Search Result 856, Processing Time 0.029 seconds

Magnetic Properties of Thin Films of a Magnetocaloric Material FeRh

  • Jekal, Soyoung;Kwon, Oryong;Hong, Soon Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.18-18
    • /
    • 2013
  • A FeRh alloy is a well-known efficient magnetocaloric material and some experimental and theoretical studies of bulk FeRh have been reported already by several groups. In this study we report first-principles calculations on magnetic properties of different thickness FeRh thin films in order to investigate the possibility to enhance further the magnetocaloric efficiency. We used Vienna Ab-initio Simulation Package (VASP) code. We found that the FeRh thin films have quite different magnetic properties from the bulk when the thickness is thinner than 6-atomic-layers. While bulk FeRh has a G-type antiferromagnetic (AFM) state, thin films which are thinner than 6-atomic-layers have an A-type AFM state or a ferromagnetic(FM) state. We will discuss possibility of magnetic phase transitions of the FeRh thin films in the view point of a magnetocaloric effect. And we found 4-, 5-, 6-layers films with Fe surface and 7-layers film with Rh surface are FM and they have dozens eV magnetocrystalline anisotropy (MCA) energy. MCA energy leads to determine energy barrier when magnetic states are changed by external magnetic field.

  • PDF

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

An Analysis of Excitation Forces on the Ship Hull Induced by the Propller (프로펠러에 의해 유기된 선체표면 기진력 해석)

  • C.S. Lee;J.T. Lee;J.C. Suh;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.81-92
    • /
    • 1992
  • This paper deals with the procedure for developing a computer program which can predict the pressure fluctuation on the ship hull by solving the boundary value problem on the hull subject to the influence of the unsteady propeller and cavity motions. The program is applied to the solution of flow around a sphere under the influence of point sources simulating the propeller cavity, and then is compared with the analytic solution based on Butler's sphere theorem. The effect of free surface condition, either pressure-free or rigid-wall, upon the pressure distribution is studied. The computer code is also applied to a RO-RO ship, leading to the conclusion that the package may be useful for the analysis of excitation forces on the ship hull induced by the propeller in the design process.

  • PDF

Thermal Hydraulic Design Parameters Study for Severe Accidents Using Neural Networks

  • Roh, Chang-Hyun;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.469-474
    • /
    • 1997
  • To provide tile information ell severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore was performed to investigate the effect of thermal hydraulic design parameters ell severe accident progression of pressurized water reactors (PWRs), Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among mile parameters. For training. different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3&4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout(SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to tile other six parameters.

  • PDF

Priliminary Numerical Simulation of the Torque Motor for a Servo Valve in the Fuel Supply System of APU (보조동력장치 연료 공급용 서보밸브 토크모터의 기초 수치모사 연구)

  • Chang, S.M.;Jeong, H.S.;Jang, G.W.;Yang, I.Y.;Lee, W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • The APU(Auxiliary Power Unit) needs a set of complex pipeline for the fuel supply system where some of the main valves controlling the flow rate consist of the servo valve worked with a torque motor. The input electric current produces an induced magnetic field almost perpendicular to the background magnetic filed generated by fixed permanent magnets. The induced torque deforms the tubular bushing, and directly rotates an armature, which can open and close the valve. In this study, we start from a basic analytic model using a simple electro-magneto-statics, and expand our model to the three-dimensional one computationally applying a commercial code named COMSOL. The result is compared with each other, and reasonable numerical data are obtained for the dynamic behavior and multi-physics system.

  • PDF

Prediction of Chlorophyll-a Changes due to Weir Constructions in the Nakdong River Using EFDC-WASP Modelling

  • Seo, Dong-Il;Kim, Min-Ae;Ahn, Jong-Ho
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.95-102
    • /
    • 2012
  • To evaluate the effect of the 4 major rivers restoration project in the Nakdong River to water quality of the river, the Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP), are applied in series. Results showed overall decrease in biochemical oxygen demand ($BOD_5$) concentrations and increase in chlorophyll-a concentrations, while total nitrogen and total phosphorous concentrations did not show significant changes, relatively. Decrease in $BOD_5$ concentrations seems to be influenced by an increased hydraulic residence time, which may allow more time for the degradation of organic material. Changes in Chlorophyll-a (Chl-a) concentration, due to the project were more significant for the upper stream areas that show relatively low Chl-a concentration ranges (less than 20 g/L). After the introduction of the Geumho River in the middle part of the Nakdong River, rapid growth of phytoplankton was observed. However, in this middle part of the Nakdong River, the ratio of Chl-a concentration change are less significant, compared to the upper stream areas, due to the project. In the lower stream area, Chl-a concentration decreased after the project. This seems to be resulted from the decreased light availability, due to increased depth, while the nutrient concentrations have been high enough to support phytoplankton growth.

VLSI Implementation of Forward Error Control Technique for ATM Networks

  • Padmavathi, G.;Amutha, R.;Srivatsa, S.K.
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.691-696
    • /
    • 2005
  • In asynchronous transfer mode (ATM) networks, fixed length cells of 53 bytes are transmitted. A cell may be discarded during transmission due to buffer overflow or a detection of errors. Cell discarding seriously degrades transmission quality. The quality degradation can be reduced by employing efficient forward error control (FEC) to recover discarded cells. In this paper, we present the design and implementation of decoding equipment for FEC in ATM networks based on a single parity check (SPC) product code using very-large-scale integration (VLSI) technology. FEC allows the destination to reconstruct missing data cells by using redundant parity cells that the source adds to each block of data cells. The functionality of the design has been tested using the Model Sim 5.7cXE Simulation Package. The design has been implemented for a $5{\times}5$ matrix of data cells in a Virtex-E XCV 3200E FG1156 device. The simulation and synthesis results show that the decoding function can be completed in 81 clock cycles with an optimum clock of 56.8 MHz. A test bench was written to study the performance of the decoder, and the results are presented.

  • PDF

Wilson-Bappu Effect: Extended to Surface Gravity

  • Park, Sunkyung;Kang, Wonseok;Lee, Jeong-Eun;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2013
  • Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (MV) and the width of the Ca II K emission line for late-type stars in 1957. Here, we revisit the Wilson-Bappu relationship (hereafter, WBR) to claim that WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high resolution spectra of 125 late-type stars, which were obtained with Bohyunsan Optical Echelle Spectrograph (BOES) and adopted from the UVES archive. Based on our measurement of the emission line width (W), we have obtained a WBR of $M_V=33.76-18.00{\log}W$. In order to extend the WBR to be a surface gravity indicator, the stellar atmospheric parameters such as effective temperature ($T_{eff}$), surface gravity (logg), metallicity ([Fe/H]), and micro-turbulence (${\xi}_{tur}$) have been derived from the self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and logW, we found that ${\log}g=-5.85\;{\log}W+9.97\;{\log}T_{eff}-23.48$ for late-type stars.

  • PDF

Estimation of Fuel Rate on the Galactic Disk from High Velocity Cloud (HVC) Infall

  • Sung, Kwang Hyun;Kwak, Kyujin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2016
  • Continuous accretion of metal-poor gas can explain the discrepancy between the number of observed G-dwarfs and the number predicted by the "simple model" of galactic evolution. The maximum accretion rate estimated based upon approaching high velocity clouds (HVCs) can be up to ${\sim}0.4M_{\odot}{\cdot}yr^{-1}$ which is comparable with the accretion rate required by many chemical evolution models that is at least ${\sim}0.45M_{\odot}{\cdot}yr^{-1}$. However, it is not clear to what extent the exchange of gas between the disk and the cloud can occur when an HVC collides with the galactic disk. Therefore, we examined a series of HVC-Disk collision simulations using the FLASH 2.5 hydrodynamics simulation code. The outcomes of our simulations show that an HVC will more likely take away substances from the galactic disk rather than adding new material to the disk. We define this as an HVC having a "negative fuel rate". Further results in our study also indicate that the process and amount of fuel rate change can have various forms depending on the density, radius and velocity of an approaching HVC. The simulations in our study covers HVCs with a neutral hydrogen volume density from $1.0{\times}10^{-2}cm^{-3}$ to $41.0cm^{-3}$, radius of 200 pc to 1000 pc and velocity in the range between $40km{\cdot}s^{-1}$ and $100km{\cdot}s^{-1}$.

  • PDF

ASSESSMENT OF CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING UNIT-CELL EXPERIMENT AND CFD ANALYSIS (단위-셀 실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가)

  • Yoon, S.J.;Jin, C.Y.;Kim, M.H.;Park, G.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • An accurate prediction of the bypass flow is of great importance in the VHTR core design concerning the fuel thermal margin. Nevertheless, there has not been much effort in evaluating the amount and the distribution of the core bypass flow. In order to evaluate the behavior and the distribution of the coolant flow, a unit-cell experiment was carried out. Unit-cell is the regular triangular section which is formed by connecting the centers of three hexagonal blocks. Various conditions such as the inlet mass flow rate, block combinations and the size of bypass gap were examined in the experiment. CFD analysis was carried out to analyze detailed characteristics of the flow distribution. Commercial CFD code FLUENT 6.3 was validated by comparing with the experimental results. In addition, SST model and standard k-$\varepsilon$ model were validated. The results of CFD simulation show good agreements with the experimental results. SST model shows better agreement than standard k-$\varepsilon$ model. Results showed that block combinations and the size of the bypass gap have an influence on the bypass flow ratio but the inlet mass flow rate does not.