• Title/Summary/Keyword: G code

Search Result 848, Processing Time 0.024 seconds

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

3D Computational Modeling of Human P-gp NBD2 with Papyriferic Acid Derivatives

  • Gadhe, Changdev G.
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.190-194
    • /
    • 2012
  • Human P-gp is one of the protein responsible for the multidrug resistance (MDR) develpment. MDR is a major cause of the cancer chemotherapy. In this paper, we performed homology modeling, docking study of papayriferic acid into the P-gp nucleotide binding domain (NBD2). For human P-gp, X-ray crystal structure is not known yet. We developed homology model for human NBD2 using HlyB ABC transporter structure (PDB code: 1XEF, resolution 2.5 ${\AA}$). Docking study was performed using Autodock. Docking result was analyzed, which shows that ligand docks into steroid binding site and interacts through hydrophobic and hydrophilic interactions.

Wavelet-Based Digital Image Watermarking by Using Lorenz Chaotic Signal Localization

  • Panyavaraporn, Jantana;Horkaew, Paramate
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.169-180
    • /
    • 2019
  • Transmitting visual information over a broadcasting network is not only prone to a copyright violation but also is a forgery. Authenticating such information and protecting its authorship rights call for more advanced data encoding. To this end, electronic watermarking is often adopted to embed inscriptive signature in imaging data. Most existing watermarking methods while focusing on robustness against degradation remain lacking of measurement against security loophole in which the encrypting scheme once discovered may be recreated by an unauthorized party. This could reveal the underlying signature which may potentially be replaced or forged. This paper therefore proposes a novel digital watermarking scheme in temporal-frequency domain. Unlike other typical wavelet based watermarking, the proposed scheme employed the Lorenz chaotic map to specify embedding positions. Effectively making this is not only a formidable method to decrypt but also a stronger will against deterministic attacks. Simulation report herein highlights its strength to withstand spatial and frequent adulterations, e.g., lossy compression, filtering, zooming and noise.

Advanced two-level CMFD acceleration method for the 3D whole-core high-fidelity neutron adjoint transport calculation

  • Zhu, Kaijie;Hao, Chen;Xu, Yunlin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.30-43
    • /
    • 2021
  • In the 2D/1D method, a global adjoint CMFD based on the generalized equivalence theory is built to synthesize the 2D radial MOC adjoint and 1D axial NEM adjoint calculation and also to accelerate the iteration convergence of 3D whole-core adjoint transport calculation. Even more important, an advanced yet accurate two-level (TL) CMFD acceleration technique is proposed, in which an equivalent one-group adjoint CMFD is established to accelerate the multi-group adjoint CMFD and then to accelerate the 3D whole-core adjoint transport calculation efficiently. Based on these method, a new code is developed to perform 3D adjoint neutron flux calculation. Then a set of VERA and C5G7 benchmark problems are chosen to verify the capability of the 3D adjoint calculations and the effectiveness of TL CMFD acceleration. The numerical results demonstrate that acceptable accuracy of 2D/1D adjoint calculations and superior acceleration of TL CMFD are achievable.

Frequency divided group beamforming with sparse space-frequency code for above 6 GHz URLLC systems

  • Chanho Yoon;Woncheol Cho;Kapseok Chang;Young-Jo Ko
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.925-935
    • /
    • 2022
  • In this study, we propose a limited feedback-based frequency divided group beamforming with sparse space-frequency transmit diversity coded orthogonal frequency division multiplexing (OFDM) system for ultrareliable low latency communication (URLLC) scenario. The proposed scheme has several advantages over the traditional hybrid beamforming approach, including not requiring downlink channel state information for baseband precoding, supporting distributed multipoint transmission structures for diversity, and reducing beam sweeping latency with little uplink overhead. These are all positive aspects of physical layer characteristics intended for URLLC. It is suggested in the system to manage the multipoint transmission structure realized by distributed panels using a power allocation method based on cooperative game theory. Link-level simulations demonstrate that the proposed scheme offers reliability by achieving both higher diversity order and array gain in a nonline-of-sight channel of selectivity and limited spatial scattering.

A probabilistic micromechanical framework for self-healing polymers containing microcapsules

  • D.W. Jin;Taegeon Kil;H.K. Lee
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.167-177
    • /
    • 2023
  • A probabilistic micromechanical framework is proposed to quantify numerically the self-healing capabilities of polymers containing microcapsules. A two-step self-healing process is designed in this study: A probabilistic micromechanical framework based on the ensemble volume-averaging method is derived for the polymers, and a hitting probability model combined with a crack nucleation model is then utilized for encountering microcapsules and microcracks. Using this framework, a series of parametric investigations are performed to examine the influence of various model parameters (e.g., the volume fraction of microcapsules, microcapsule radius, radius ratio of microcracks to microcapsules, microcrack aspect ratio, and scale parameter) on the self-healing capabilities of the polymers. The proposed framework is also implemented into a finite element code to solve the self-healing behavior of tapered double cantilever beam specimens.

Changes in the quality characteristics of cricket (Gryllus bimaculatus) under various processing conditions (가공조건에 따른 귀뚜라미의 식품학적 품질 특성 변화)

  • Kim, Eun-Mi;Lim, Jeong-Ho;Chang, Yoon-Je;An, Seong-Hwan;Ahn, Mi-Young
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.218-224
    • /
    • 2015
  • Crickets have been used as crude drug for treating fever and hypertension in East Asia. This study was carried out to investigate the quality characteristics such as the microbial and nutrient contents of crickets (Gryllus bimaculatus) prepared with various processing conditions for use as food. These conditions included the lyophilization process (LP), hot-air process (HP, $90^{\circ}C$ for 7 hr), roasting process (RP, $160^{\circ}C$ for 40 min), and frying process (FP, $180^{\circ}C$ for 30 sec). The total bacterial population of the crickets was 5~7 log CFU/g, but Coliform and E. coli were not detected. The major fatty acids in all the samples were palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). The level of polyunsaturated fatty acids was highest (63.55 g/100 g) in the LP-processed crickets. As for the amino acid content, the glutamic acid level was highest in all the samples, and the RP and FP decreased by 12.01% and 53.88%, respectively, compared to that of the LP. The mineral contents were highest in the LP-processed crickets. Hg was detected at about 1.0 ppb in all the samples, but its level was lower than the residue tolerance level in the Korean Food Code. Such conditions should be considered to better understand the quality characteristics of crickets in food processing.

Voronoi Grain-Based Distinct Element Modeling of Thermally Induced Fracture Slip: DECOVALEX-2023 Task G (Benchmark Simulation) (Voronoi 입자기반 개별요소모델을 이용한 암석 균열의 열에 의한 미끄러짐 해석: 국제공동연구 DECOVALEX-2023 Task G(Benchmark simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.593-609
    • /
    • 2021
  • We proposed a numerical method for the thermo-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) and simulated thermally induced fracture slip. The present study is the benchmark simulation performed as part of DECOVALEX-2023 Task G, which aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as an assembly of Voronoi grains and calculated the interaction of the grains (blocks) and their interfaces (contacts) using a distinct element code, 3DEC. Based on an equivalent continuum approach, the micro-parameters of grains and contacts were determined to reproduce rock as an elastic material. Then, the behavior of the fracture embedded in the rock was characterized by the contacts with Coulomb shear strength and tensile strength. In the benchmark simulation, we quantitatively examined the effects of the boundary stress and thermal stress due to heat conduction on fracture behavior, focusing on the mechanism of thermally induced fracture slip. The simulation results showed that the developed numerical model reasonably reproduced the thermal expansion and thermal stress increment, the fracture stress and displacement and the effect of boundary condition. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Comparison of Heat Resistance of Bacillus subtilis, Geobacillus stearothermophilus, and Bacillus atrophaeus spores (Bacillus subtilis, Geobacillus stearothermophilus 및 Bacillus atrophaeus 포자의 열 저항성 비교)

  • Eun-Sun Jeong;Ju-Hee Nam;Jung-Beom Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.356-360
    • /
    • 2023
  • We analyzed the heat resistance of non-pathogenic Bacillus atrophaeus, Bacillus subtilis, and Geobacillus stearothermophilus spores which exhibit strong heat resistance and evaluated the possibility of using them to determine direct sterilization when manufacturing retort foods. The D121-values of B. subtilis, G. stearothermophilus, and B. atrophaeus spores were 2.9±0.1 min, 4.3±0.1 min, and 3.7±0.1 min, respectively. The Z-values of B. subtilis, G. stearothermophilus, and B. atrophaeus spores were 43.0±1.4℃, 25.0±1.6℃, and 35.8±1.4℃, respectively. The D121-values of B. subtilis, G. stearothermophilus, and B. atrophaeus spores were all higher than that of Clostridium botulinum spores used to confirm retort food sterilization. Considering these results, B. subtilis, G. stearothermophilus, and B. atrophaeus spores can be used instead of the pathogenic spore-forming bacteria C. botulinum when sterilizing retort food. In addition, sterilization can be confirmed in 2 to 3 days, a shorter time than the 13 days required for existing bacterial growth experiments based on the Korean food code.

Studies on the HIS 5 Gene of Yeast - The nucleotide sequence of 5' upstream region of the HIS 5 Gene of Saccharomyces cerevisiae - (효모 HIS 5 유전자에 관한 연구 - Saccharomyces cerevisiae HIS 5 유전자의 5' 상류영역의 염기배열 -)

  • Chung, Dong Hyo;Nishiwaki, Kyoni;Oshima, Yasuji
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 1985
  • The HIS5 gene of Saccharomyces cerevisiae host was encoded histidinol phosphate aminotransferase(E.C.: 2.6. 1.9). The HIS5 gene of Saccharomyces cerevisiae was cloned on plasmid pSH 530. This gene mighted be transcripted from a promoter of yeast gene both in E. coli and yeast hosts. We have determined the nucleotide sequence of the yeast HIS5 gene and its 5' and 3' flanking sequences. There are no large differences between the relative levels of HIS5 mRNA molecules with different 5' termini in represent and derepressed cell. In the DNA sequence upstream from the 5' termini of HIS5 mRNA we have found live closely related copies of a 9 base pair sequence. The sequence is also repeated in the 5' noncoding regions of HIS1, HIS3, HIS4, HIS5 and TRP5. Closely related sequence are not found flanking repeat sequence plays a role in the regulation of amino acid biosynthetic genes subject to the general amino acid control.

  • PDF