• 제목/요약/키워드: G/M/1 queue

검색결과 94건 처리시간 0.025초

고객수 기반의 오버로드 제어 정책이 있는 M/G/1/K 대기행렬의 바쁜기간 분석 (Busy Period Analysis of an M/G/1/K Queue with the Queue-Length-Dependent Overload Control Policy)

  • 임헌상;임대은
    • 한국시뮬레이션학회논문지
    • /
    • 제27권3호
    • /
    • pp.45-52
    • /
    • 2018
  • 대기행렬에 고객 (또는 패킷 등)이 몰리는 오버로드(overload)가 발생하는 경우 긴 대기열이 발생하여 서비스 품질에 좋지 않은 영향을 줄 수 있다. 오버로드 상황에서 혼잡을 완화하기 위해 대기하는 고객숫자에 기반한 다양한 오버로드 제어 정책들이 고안, 적용되고 있다. 본 연구는 대기 중인 고객 숫자에 한계점 (threshold)을 두고, 한계점을 넘으면 서비스 속도를 빠르게 하거나 고객의 도착 간격(시간)을 증가시키는 제어정책을 대상으로 한다. 이러한 정책을 갖는 M/G/1 대기행렬에 대해 바쁜 기간(busy period)을 분석하는데, 연구결과는 비용구조가 주어졌을 때 최적 시스템 제어 정책을 찾는데 필수적이다.

A Batch Arrival Queue with a Random Setup Time Under Bernoulli Vacation Schedule

  • Choudhury, Gautam;Tadj, Lotfi;Paul, Maduchanda
    • Management Science and Financial Engineering
    • /
    • 제15권2호
    • /
    • pp.1-21
    • /
    • 2009
  • We consider an $M^x/G/1$ queueing system with a random setup time under Bernoulli vacation schedule, where the service of the first unit at the completion of each busy period or a vacation period is preceded by a random setup time, on completion of which service starts. However, after each service completion, the server may take a vacation with probability p or remain in the system to provide next service, if any, with probability (1-p). This generalizes both the $M^x/G/1$ queueing system with a random setup time as well as the Bernoulli vacation model. We carryout an extensive analysis for the queue size distributions at various epochs. Further, attempts have been made to unify the results of related batch arrival vacation models.

임의의 횟수의 휴가를 갖는 $M^{X}/G/1$$GEO^{X}/G/1$ 대기행렬의 분석 (Analysis of $M^{X}/G/1$ and $GEO^{X}/G/1$ Queues with Random Number of Vacations)

  • 채경철;김남기;이호우
    • 한국경영과학회지
    • /
    • 제27권2호
    • /
    • pp.51-61
    • /
    • 2002
  • By using the arrival time approach of Chae et at. [6], we derive various performance measures including the queue length distributions (in PGFs) and the waiting time distributions (in LST and PGF) for both M$^{x}$ /G/1 and Geo$^{x}$ /G/1 queueing systems, both under the assumption that the server, when it becomes idle, takes multiple vacations up to a random maximum number. This is an extension of both Choudhury[7] and Zhang and Tian [11]. A few mistakes in Zhang and Tian are corrected and meaningful interpretations are supplemented.

An M/G/1 queue under the $P_{\lambda,\tau}^M$ service policy

  • Kim, Jong-Woo;Lee, Ji-Yeon
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 춘계학술대회
    • /
    • pp.25-29
    • /
    • 2005
  • We analyze an M/G/1 queueing system under $P_{\lambda,\tau}^M$ service policy. By using the level crossing theory and solving the corresponding integral equations, we obtain the stationary distribution of the workload in the system explicitly.

  • PDF

THE M/G/1 FEEDBACK RETRIAL QUEUE WITH BERNOULLI SCHEDULE

  • Lee, Yong-Wan;Jang, Young-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.259-266
    • /
    • 2009
  • We consider an M/G/1 feedback retrial queue with Bernoulli schedule in which after being served each customer either joins the retrial group again or departs the system permanently. Using the supplementary variable method, we obtain the joint generating function of the numbers of customers in two groups.

  • PDF

DIFFUSION APPROXIMATION OF TIME DEPENDENT QUEUE SIZE DISTRIBUTION FOR $M^X$/$G^Y$/$_c$ SYSTEM$^1$

  • Choi, Bong-Dae;Shin, Yang-Woo
    • 대한수학회논문집
    • /
    • 제10권2호
    • /
    • pp.419-438
    • /
    • 1995
  • We investigate a tansient diffusion approximation of queue size distribution in $M^{X}/G^{Y}/c$ system using the diffusion process with elementary return boundary. We choose an appropriate diffusion process which approxiamtes the queue size in the system and derive the transient solution of Kolmogorov forward equation of the diffusion process. We derive an approximation formula for the transient queue size distribution and mean queue size, and then obtain the stationary solution from the transient solution. Accuracy evalution is presented by comparing approximation results for the mean queue size with the exact results or simulation results numerically.

  • PDF

QUEUE LENGTH DISTRIBUTION IN A QUEUE WITH RELATIVE PRIORITIES

  • Kim, Jeong-Sim
    • 대한수학회보
    • /
    • 제46권1호
    • /
    • pp.107-116
    • /
    • 2009
  • We consider a single server multi-class queueing model with Poisson arrivals and relative priorities. For this queue, we derive a system of equations for the transform of the queue length distribution. Using this system of equations we find the moments of the queue length distribution as a solution of linear equations.

THE M/G/1 QUEUE WITH MARKOV MODULATED FEEDBACK

  • Han, Dong-Hwan;Park, Chul-Geun
    • Journal of applied mathematics & informatics
    • /
    • 제5권3호
    • /
    • pp.827-837
    • /
    • 1998
  • We consider the M/G/1 queue with instantaneous feed-back. The probabilities of feedback are determined by the state of the underlaying Markov chain. by using the supplementary variable method we derive the generating function of the number of customers in the system. In the analysis it is required to calculate the matrix equations. To solve the matrix equations we use the notion of Ex-tended Laplace Transform.

THE ${M_1},{M_/2}/G/l/K$ RETRIAL QUEUEING SYSTEMS WITH PRIORITY

  • Choi, Bong-Dae;Zhu, Dong-Bi
    • 대한수학회지
    • /
    • 제35권3호
    • /
    • pp.691-712
    • /
    • 1998
  • We consider an M$_1$, M$_2$/G/1/ K retrial queueing system with a finite priority queue for type I calls and infinite retrial group for type II calls where blocked type I calls may join the retrial group. These models, for example, can be applied to cellular mobile communication system where handoff calls have higher priority than originating calls. In this paper we apply the supplementary variable method where supplementary variable is the elapsed service time of the call in service. We find the joint generating function of the numbers of calls in the priority queue and the retrial group in closed form and give some performance measures of the system.

  • PDF

시스템 내 고객 수에 따라 서비스율과 도착율을 조절하는 M/G/1/K 대기행렬의 분석 (Analysis of an M/G/1/K Queueing System with Queue-Length Dependent Service and Arrival Rates)

  • 최두일;임대은
    • 한국시뮬레이션학회논문지
    • /
    • 제24권3호
    • /
    • pp.27-35
    • /
    • 2015
  • 대기행렬 시스템에는 고객들의 대기시간이 지나치게 길어지는 것을 막기 위해 다양한 정책들이 적용되는데, 본 연구에서는 고객숫자에 따른 제어 정책을 갖는 유한용량 M/G/1/K 대기행렬을 분석한다. 고객의 숫자에 따라 서버의 서비스율과 고객의 도착율을 조절하는 정책이다. 두 개의 한계점(thresholds) $L_1$$L_2$($${\geq_-}$$L1)를 설정하고 시스템 내 고객의 숫자가 $L_1$보다 작을 때는 시스템은 보통(또는 상대적으로 느린)의 서비스율(service rate)과 보통의 도착율(arrival rate)을 갖는다. 고객의 숫자가 증가하여 $L_1$이상이고 $L_2$보다 작으면 도착율은 그대로 이지만 서비스율을 증가시켜 빠르게 서비스한다. 이후 고객의 숫자가 더욱 증가하여 $L_2$ 이상이면 고객의 도착율도 작은 값으로 바꾸어 고객을 덜 입장시킨다. 위 정책을 갖는 M/G/1/K 대기행렬을 내재점 마코프 체인과 준-마코프 과정을 이용하여 분석하고 수치예제를 제시한다.