• Title/Summary/Keyword: Fuzzy-PI

Search Result 352, Processing Time 0.026 seconds

Speed Estimation and Control of IPMSM Drive using NFC and ANN (NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.282-289
    • /
    • 2005
  • This paper proposes a fuzzy neural network controller based on the vector control for interior permanent magnet synchronous motor(IPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability This paper does not oかy presents speed control of IPMSM using neuro-fuzzy control(NFC) but also speed estimation using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Thus, it is presented the theoretical analysis as well as the analysis results to verify the effectiveness of the proposed method in this paper.

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.

Multi-Channel Active Noise Control System Designs using Fuzzy Logic Stabilized Algorithms (퍼지논리 안정화알고리즘을 이용한 다중채널 능동소음제어시스템)

  • Ahn, Dong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3647-3653
    • /
    • 2012
  • In active noise control filter, IIR filter structure which used for control filter assures the stability property. The stability characteristics of IIR filter structure is mainly determined by pole location of control filter within unit disc, so stable selection of the value of control filter coefficient is very important. In this paper, we proposed novel adaptive stabilized Filtered_U LMS algorithms with IIR filter structure which has better convergence speed and less computational burden than conventional FIR structures, for multi-channel active noise control with vehicle enclosure signal case. For better convergence speed in adaptive algorithms, fuzzy LMS algorithms where convergence coefficient computed by a fuzzy PI type controller was proposed.

Fuzzy Controller Design of PC Based for Solar Tracking System (태양 추적시스템을 위한 PC 기반의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.86-94
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in of order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studies. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

Expert knowledge-based auto-tuning of PI controllers for a drum-type boiler of fossil power plant (전문가 지식을 이용한 화력 발전소 드럼형 보일러 PI 제어기의 자동 동조에 관한 연구)

  • 권만준;황동환;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.219-225
    • /
    • 1991
  • The characteristics of a power plant changes as it operates for a long time and/or for different operating points. As a result, operators must retune gains of the controllers for better performance. In fact, skilled operators can retune the gains in reference to recorded data obtained by a test called dynamic test. The dynamic test, however, requires much time, and can be heavy burden for operators. In this paper, an expert knowledge-based auto-tuner is designed for drum-type boiler controllers of a fossil power plant using fuzzy logic. The performance of the proposed auto-tuner is shown via computer simulation and the simulation results show that the proposed auto-tuner is satisfactory for the desired performance.

  • PDF

Efficiency Optimization Control of IPMSM using FNN-PI (FNN-PI를 이용한 IPMSM의 효율최적화 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jun, Young-Sun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.395-398
    • /
    • 2008
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In order to maximize the efficiency in such applications, this paper proposes the FNN(Fuzzy Neural-Network)-Pl controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the error back propagation algorithm(EBPA). This paper considers the parameter variation about the motor operation. The operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

A Sensorless Control Scheme of the Three-Phase Z-Source PFC PWM Rectifier Using Fuzzy-PI Controller (퍼지-PI 제어기를 이용한 3상 Z-소스 PFC PWM 정류기의 센서리스 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Qiu, Xiao Dong;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.22-23
    • /
    • 2013
  • 본 논문에서는 기존 3상 PWM 정류기의 문제점을 극복하기 위하여, 3상 Z-소스 PWM정류기와 시스템의 간소화, 안정화, 비용 상승을 고려한 센서리스 제어 기법을 제안하였다. 또한 DC-link단 전압제어기는 시스템에 대한 경험과 정성적인 정보에 기초하고 제어 대상에 대한 정확한 수식이 없어도 제어기 설계가 가능한 퍼지 PI제어기를 이용하였다. 제안한 정류기는 교류측 전압과 전류 센서 없이 DC-link단 전압과 전류 센서만을 이용하여 교류측 전압과 전류를 추정하고 단위역률을 구현하였으며, 이를 PSIM시뮬레이션을 통하여 검증 하였다.

  • PDF

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.

Design of Space Search-Optimized Polynomial Neural Networks with the Aid of Ranking Selection and L2-norm Regularization

  • Wang, Dan;Oh, Sung-Kwun;Kim, Eun-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1724-1731
    • /
    • 2018
  • The conventional polynomial neural network (PNN) is a classical flexible neural structure and self-organizing network, however it is not free from the limitation of overfitting problem. In this study, we propose a space search-optimized polynomial neural network (ssPNN) structure to alleviate this problem. Ranking selection is realized by means of ranking selection-based performance index (RS_PI) which is combined with conventional performance index (PI) and coefficients based performance index (CPI) (viz. the sum of squared coefficient). Unlike the conventional PNN, L2-norm regularization method for estimating the polynomial coefficients is also used when designing the ssPNN. Furthermore, space search optimization (SSO) is exploited here to optimize the parameters of ssPNN (viz. the number of input variables, which variables will be selected as input variables, and the type of polynomial). Experimental results show that the proposed ranking selection-based polynomial neural network gives rise to better performance in comparison with the neuron fuzzy models reported in the literatures.

Wind turbine output control using Fuzzy PI controller of Energy storage system (풍력발전시스템의 출력제어를 위한 에너지저장장치의 Fuzzy PI제어기 설계에 관한 연구)

  • Lee, Hee-Tae;Koo, Bon-Gil;Lee, Sang-Hun;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.402-403
    • /
    • 2011
  • This paper presents an active and reactive power compensator for the wind power system with multi-polar synchronous generator. The proposed compensator is composed of a charge/discharge PWM converter and battery. The output power of a wind power system changes irregularly according to the variation of wind speed. The developed system is able to continuously compensate the active and reactive power. The operational feasibility of the proposed model was verified by simulations with PSCAD/EMTDC.

  • PDF