• Title/Summary/Keyword: Fuzzy-GA

Search Result 282, Processing Time 0.03 seconds

A Design of Fuzzy Power System Stabilizer using Adaptive Evolutionary Computation (적응진화연산을 이용한 퍼지-전력계통안정화장치 설계)

  • Hwang, Gi-Hyun;Park, June-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.704-711
    • /
    • 1999
  • This paper presents a design of fuzzy power system stabilizer (FPSS) using adaptive evolutionary computation (AEC). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. FPSS shows better control performances than conventional power system stabilizer (CPSS) in three-phase fault with heavy load which is used when tuning FPSS. To show the robustness of the proposed FPSS, it is appliedto damp the low frequency oscillations caused by disturbances such as three-phase fault with normal and light load, the angle deviation of generator with normal and light load and the angle deviation of generator with heavy load. Proposed FPSS shows better robustness than CPSS.

  • PDF

Autonomous Guided Vehicle Using Self-Organizing Fuzzy Controller (자기 조직화 퍼지 제어기를 적용한 자율 운송 장치)

  • Na, Yeong-Nam;Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1160-1168
    • /
    • 2000
  • Due to the increase in importance of factory-automation (FA) in the field of production, the importance of he autonomous guided vehicle's (AGV) role has also increased. This paper is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an behavior-based system evolving by itself is also being considered. In this paper, constructed an active and effective AGV fuzzy controller to be able to carry out self-organization. To construct it, we tuned suboptimally membership function using a genetic algorithm (GA) and improved the control efficiency by self-correction and the generation of control rules.

  • PDF

The Fuzzy Modeling by Virus-messy Genetic Algorithm (바이러스 메시 유전 알고리즘에 의한 퍼지 모델링)

  • 주영훈;최종일;박직배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.95-100
    • /
    • 2001
  • 비선형 시스템의 성공적인 퍼지 모델을 구성하기 위한 최적의 퍼지 추론 시스템의 동정은 중요하고도 어려운 문제이다. 전통적으로 유전 알고리즘은 어느 정도의 전역 최적해를 찾을 수 있기 때문에 퍼지 모델의 구조와 파라미터를 동정하는데 사용되어 왔다. 그러나, 유전 알고리즘은 개체군 진화 시 우수한 개체의 출현은 지역수렴의 원인이 된다. 따라서, 본 논문에서는 바이러스 메시 유전알고리즘을 이용한 효과적인 퍼지 모델링 방법을 제안한다. 제안된 방법은 지역 정보가 개체군 내에서 교환됨으로써 지역 수렴의 대인아 될 수 있을 뿐 아니라, 가변길이 스트링을 사용함으로써 좀더 효과적이고 적응적인 구조를 가질 수 있다. 또한 본 논문에서 제안한 방법의 우수성과 일반성을 증명하기 위해 복잡한 비선형 시스템과 가스로의 퍼지모델링에 적용하였다.

  • PDF

A Modified FCM for Nonlinear Blind Channel Equalization using RBF Networks

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. In its searching procedure, all of the possible desired channel states are constructed with the elements of estimated channel output states. The desired state with the maximum Bayesian fitness is selected and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

Optimization of Fuzzy Set Fuzzy Model by Means of Particle Swarm Optimization (PSO를 이용한 퍼지집합 퍼지모델의 최적화)

  • Kim, Gil-Sung;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.329-330
    • /
    • 2007
  • 본 논문에서는 particle swarm optimization(PSO)를 통한 비선형시스템의 퍼지집합 퍼지모델의 최적화 방법을 제안한다. 퍼지 모델링에서 전반부 동정, 즉 구조 동정 및 파라미터 동정은 비선형 시스템을 표현하는데 있어서 매우 중요하다. 퍼지모델의 전반부 동정에 있어 최적화 과정이 필요하며 유전자 알고리즘(Genetic Algorithm; GA)을 이용하여 퍼지모델을 최적화한 연구가 많이 있다. 본 연구는 파라미터 동정 시 최근 여러 가지 어려운 최적화 문제를 수행함에 있어서 성능의 우수성이 증명된 PSO를 이용하여 퍼지집합 퍼지모델의 전반부 파라미터를 동정하였다. 구조동정은 단순 유전자 알고리즘(Simple Genetic Algorithm; SGA)을 이용하여 동정하였으며 파라미터 동정시 실수 코딩유전자 알고리즘(Real Coded Genetic Algorithm; RCGA)와 PSO를 각각 파라미터 동정에 이용하여 성능을 비교하였다.

  • PDF

Study on Fault Diagnostics Considering Sensor Noise and Bias of Mixed Flow Type 2-Spool Turbofan Engine using Non-Linear Gas Path Analysis Method and Genetic Algorithms (혼합배기가스형 2 스풀 터보팬 엔진의 가스경로 기법과 유전자 알고리즘 이용한 센서 노이즈 및 바이어스를 고려한 고장진단 연구)

  • Kong, Changduk;Kang, Myoungcheol;Park, Gwanglim
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.8-18
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

Comparative Study of Artificial-Intelligence-based Methods to Track the Global Maximum Power Point of a Photovoltaic Generation System (태양광 발전 시스템의 전역 최대 발전전력 추종을 위한 인공지능 기반 기법 비교 연구)

  • Lee, Chaeeun;Jang, Yohan;Choung, Seunghoon;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.297-304
    • /
    • 2022
  • This study compares the performance of artificial intelligence (AI)-based maximum power point tracking (MPPT) methods under partial shading conditions in a photovoltaic generation system. Although many studies on AI-based MPPT have been conducted, few studies comparing the tracking performance of various AI-based global MPPT methods seem to exist in the literature. Therefore, this study compares four representative AI-based global MPPT methods including fuzzy logic control (FLC), particle swarm optimization (PSO), grey wolf optimization (GWO), and genetic algorithm (GA). Each method is theoretically analyzed in detail and compared through simulation studies with MATLAB/Simulink under the same conditions. Based on the results of performance comparison, PSO, GWO, and GA successfully tracked the global maximum power point. In particular, the tracking speed of GA was the fastest among the investigated methods under the given conditions.

Design of Fuzzy Controller using Multi-objective Genetic Algorithm (다목적 유전자 알고리즘을 이용한 퍼지제어기의 설계)

  • Kim Hyun-Su;Roschke P. N.;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.209-216
    • /
    • 2005
  • The controller that can control the smart base isolation system consisting of M damper and friction pendulum systems(FPS) is developed in this study. A fuzzy logic controller (FLC) is used to modulate the M damper force because the FLC has an inherent robustness and ability to handle non-linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. When earthquake excitations are applied to the structures equipped with smart base isolation system, the relative displacement at the isolation level as well as the acceleration of the structure should be regulated under appropriate level. Thus, NSGA-II(Non-dominated Sorting Genetic Algorithm) is employed in this study as a multi-objective genetic algorithm to meet more than two control objectives, simultaneously. NSGA-II is used to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can efficiently find Pareto optimal sets that can reduce both structural acceleration and base drift from numerical studies.

  • PDF

A Study on Torque Optimization of Planar Redundant Manipulator using A GA-Tuned Fuzzy Logic Controller (유전자 알고리즘으로 조정된 퍼지 로직 제어기를 이용한 평면 여자유도 매니퓰레이터의 토크 최적화에 관한 연구)

  • Yoo, Bong-Soo;Kim, Seong-Gon;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.642-648
    • /
    • 2008
  • A lot of researches on the redundant manipulators have been focused mainly on the minimization of joint torques. However, it is well-known that the most dynamic control algorithms using local joint torque minimization cause huge torques which can not be implemented by practical motor drivers. A new control algorithm which reduces considerably such a huge-required-torque problem is proposed in this paper. It adapts fuzzy logic and genetic algorithm to the conventional local joint torque minimization algorithm. The proposed algorithm is applied to a 3-DOF redundant planar robot. Simulation results show that the proposed algorithm works well.

Path Planning of Autonomous Guided Vehicle Using fuzzy Control & Genetic Algorithm (유전자 알고리즘과 퍼지 제어를 적용한 자율운송장치의 경로 계획)

  • Kim, Yong-Gug;Lee, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.397-406
    • /
    • 2000
  • Genetic algorithm is used as a means of search, optimization md machine learning, its structure is simple but it is applied to various areas. And it is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an action base system evolving by itself is also being considered. There is to have a problem that depended entirely on heuristic knowledge of expert forming membership function and control rule for fuzzy controller design. In this paper, for forming the fuzzy control to perform self-organization, we tuned the membership function to the most optimal using a genetic algorithm(GA) and improved the control efficiency by the self-correction and generation of control rules.

  • PDF