• Title/Summary/Keyword: Fuzzy-GA

Search Result 282, Processing Time 0.032 seconds

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation of Learning and Evolution (학습과 진화의 Lamarckian 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 김대진;이한별;강대성
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.85-98
    • /
    • 1998
  • This paper proposes a new design method of neuro-FLC by the Lamarckian co-adaptation scheme that incorporates the backpropagation learning into the GA evolution in an attempt to find optimal design parameters (fuzzy rule base and membership functions) of application-specific FLC. The design parameters are determined by evolution and learning in a way that the evolution performs the global search and makes inter-FLC parameter adjustments in order to obtain both the optimal rule base having high covering value and small number of useful fuzzy rules and the optimal membership functions having small approximation error and good control performance while the learning performs the local search and makes intra-FLC parameter adjustments by interacting each FLC with its environment. The proposed co-adaptive design method produces better approximation ability because it includes the backpropagation learning in every generation of GA evolution, shows better control performance because the used COG defuzzifier computes the crisp value accurately, and requires small workspace because the optimization procedure of fuzzy rule base and membership functions is performed concurrently by an integrated fitness function on the same fuzzy partition. Simulation results show that the Lamarckian co-adapted FLC produces the most superior one among the differently generated FLCs in all aspects such as the number of fuzzy rules, the approximation ability, and the control performance.

  • PDF

River stage forecasting models using support vector regression and optimization algorithms (Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index (유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계)

  • Oh, Sung-Kwun;Yoon, Ki-Chan;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Behavior Control of Autonomous Mobile Robot using Schema Co-evolution (스키마 공진화 기법을 이용한 자율이동로봇의 행동제어)

  • Sun, Joung-Chi;Byung, Jun-Hyo;Bo, Sim-Kwee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.123-126
    • /
    • 1998
  • The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the Meaning of these foundational concepts, simple genetic algorithm(SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithms. In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. So we propose a co-evolutionary method finding optimal fuzzy rules. Our algorithm is that after constructing two population groups m de up of rule vase and its schema, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the proposed method to a path planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.

  • PDF

Optimal Coordination and Penetration of Distributed Generation with Shunt FACTS Using GA/Fuzzy Rules

  • Mahdad, Belkacem;Srairi, Kamel;Bouktir, Tarek
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • In recent years, integration of new distributed generation (DG) technology in distribution networks has become one of the major management concerns for professional engineers. This paper presents a dynamic methodology of optimal allocation and sizing of DG units for a given practical distribution network, so that the cost of active power can be minimized. The approach proposed is based on a combined Genetic/Fuzzy Rules. The genetic algorithm generates and optimizes combinations of distributed power generation for integration into the network in order to minimize power losses, and in second step simple fuzzy rules designs based upon practical expertise rules to control the reactive power of a multi dynamic shunt FACTS Compensator (SVC, STATCOM) in order to improve the system loadability. This proposed approach is implemented with the Matlab program and is applied to small case studies, IEEE 25-Bus and IEEE 30-Bus. The results obtained confirm the effectiveness in sizing and integration of an assigned number of DG units.

Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks

  • Park, Ji Hun;An, Ye Ji;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2547-2555
    • /
    • 2021
  • The frequency of reactor coolant leakage is expected to increase over the lifetime of a nuclear power plant owing to degradation mechanisms, such as flow-acceleration corrosion and stress corrosion cracking. When loss of coolant accidents (LOCAs) occur, several parameters change rapidly depending on the size and location of the cracks. In this study, leak flow during LOCAs is predicted using a deep fuzzy neural network (DFNN) model. The DFNN model is based on fuzzy neural network (FNN) modules and has a structure where the FNN modules are sequentially connected. Because the DFNN model is based on the FNN modules, the performance factors are the number of FNN modules and the parameters of the FNN module. These parameters are determined by a least-squares method combined with a genetic algorithm; the number of FNN modules is determined automatically by cross checking a fitness function using the verification dataset output to prevent an overfitting problem. To acquire the data of LOCAs, an optimized power reactor-1000 was simulated using a modular accident analysis program code. The predicted results of the DFNN model are found to be superior to those predicted in previous works. The leak flow prediction results obtained in this study will be useful to check the core integrity in nuclear power plant during LOCAs. This information is also expected to reduce the workload of the operators.

Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method

  • Shariatmadar, Hashem;Razavi, Hessamoddin Meshkat
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.547-564
    • /
    • 2014
  • This study focuses on the application of an active tuned mass damper (ATMD) for controlling the seismic response of an 11-story building. The control action is achieved by combination of a fuzzy logic controller (FLC) and Particle Swarm Optimization (PSO) method. FLC is used to handle the uncertain and nonlinear phenomena while PSO is used for optimization of FLC parameters. The FLC system optimized by PSO is called PSFLC. The optimization process of the FLC system has been performed for an 11-story building under the earthquake excitations recommended by International Association of Structural Control (IASC) committee. Minimization of the top floor displacement has been used as the optimization criteria. The results obtained by the PSFLC method are compared with those obtained from ATMD with GFLC system which is proposed by Pourzeynali et al. and non-optimum FLC system. Based on the parameters obtained from PSFLC system, a global controller as PSFLCG is introduced. Performance of the designed PSFLCG has been checked for different disturbances of far-field and near-field ground motions. It is found that the ATMD system, driven by FLC with the help of PSO significantly reduces the peak displacement of the example building. The results show that the PSFLCG decreases the peak displacement of the top floor by about 10%-30% more than that of the FLC system. To show the efficiency and superiority of the adopted optimization method (PSO), a comparison is also made between PSO and GA algorithms in terms of success rate and computational processing time. GA is used by Pourzeynali et al for optimization of the similar system.

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

Design of Fuzzy PI Controllers for the Temperature Control of Soldering Systems (솔더링 시스템의 온도 제어를 위한 퍼지 PI 제어기 설계)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.325-333
    • /
    • 2016
  • This paper proposes controller design algorithms for a ceramic soldering iron temperature control system, and reports their effectiveness in a control experiment. Because the responses of the ceramic soldering iron temperature to the control input are non-linear and very slow, precise modeling and controller design is difficult. In this study, the temperature characteristics of a ceramic soldering iron are represented by TSK fuzzy models consisting of TSK fuzzy rules. In the fuzzy rules, the premise variable is the control input and the consequences are the transfer functions. The transfer functions in the fuzzy model were obtained from the step input responses. As the responses of the ceramic soldering iron temperature are very slow, it is difficult to obtain the complete step input responses. This paper proposes a genetic algorithm to obtain the transfer functions from an incomplete step input responses, and showed its effectiveness in examples. This paper also reports a fuzzy controller design method from the TSK fuzzy model and examples. The proposed methods were applied to the temperature control experiments of ceramic iron. The TSK fuzzy model consisted of 7 TSK fuzzy rules, and the consequences were PI controllers. The experimental results of the proposed fuzzy PI controller were superior to the linear controller and were as good as in previous studies using a fuzzy PID controller.

Genetic Outlier Detection for a Robust Support Vector Machine

  • Lee, Heesung;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.96-101
    • /
    • 2015
  • Support vector machine (SVM) has a strong theoretical foundation and also achieved excellent empirical success. It has been widely used in a variety of pattern recognition applications. Unfortunately, SVM also has the drawback that it is sensitive to outliers and its performance is degraded by their presence. In this paper, a new outlier detection method based on genetic algorithm (GA) is proposed for a robust SVM. The proposed method parallels the GA-based feature selection method and removes the outliers that would be considered as support vectors by the previous soft margin SVM. The proposed algorithm is applied to various data sets in the UCI repository to demonstrate its performance.