• Title/Summary/Keyword: Fuzzy-D controller

Search Result 215, Processing Time 0.022 seconds

Tracking Control of Servo System using Fuzzy Logic Cross Coupled Controller (퍼지 논리형 상호결합 제어기를 이용한 서보 시스템의 추적제어)

  • 신두진;허욱열
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.361-366
    • /
    • 2001
  • This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

A Learning Fuzzy Logic Controller Using Neural Networks (신경회로망을 이용한 학습퍼지논리제어기)

  • Kim, B.S.;Ryu, K.B.;Min, S.S.;Lee, K.C.;Kim, C.E.;Cho, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.225-230
    • /
    • 1992
  • In this paper, a new learning fuzzy logic controller(LFLC) is presented. The proposed controller is composed of the main control part and the learning part. The main control part is a fuzzy logic controller(FLC) based on linguistic rules and fuzzy inference. For the learning part, artificial neural network(ANN) is added to FLC so that the controller may adapt to unknown plant and environment. According to the output values of the ANN part, which is learned using error back-propagation algorithm, scale factors of the FLC part are determined. These scale factors transfer the range of values of input variables into corresponding universe of discourse in the FLC part in order to achieve good performance. The effectiveness of the proposed control strategy has been demonstrated through simulations involving the control of an unknown robot manipulator with load disturbance.

  • PDF

Contour Control of X-Y Tables Using Nonlinear Fuzzy PD Controller (비선형 퍼지 PD 제어기를 이용한 X-Y 테이블의 경로제어)

  • Chai, Chang-Hyun;Suk, Hong-Seong;Kim, Hee-Nyon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2849-2852
    • /
    • 1999
  • This paper describes the fuzzy PD controller using simplified indirect inference method. First, the fuzzy PD controller is derived from the conventional continuous time linear PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. particularly when the process to be controlled is nonlinear. As the SIIM is applied, the fuzzy Inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the Proposed method has the capability of the high speed inference and extending the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control Performance of the one Proposed by D. Misir et at. Final)y. we simulated the contour control of the X-Y tables with direct control strategies using the proposed fuzzy PD controller.

  • PDF

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.

High Performance of Induction Motor Drive with HAI Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

The Design of Hybrid Fuzzy Controller Based on Parameter Estimation Mode Using Genetic Algorithms (유전자 알고리즘을 이용한 파라미터 추정모드기반 하이브리드 퍼지 제어기의 설계)

  • 이대근;오성권;장성환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.228-231
    • /
    • 2000
  • A hybrid fuzzy controller by means of the genetic algorithms is presented. The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PlD's output in steady state by a fuzzy variable. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller. A auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller using genetic algorithms. The algorithms estimates automatical Iy the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA three kinds of estimation modes are effectively utilized. The HFCs are applied to the second process with time-delay. Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed in ITAE(Integral of the Time multiplied by the Absolute value of Error ) and other ways.

  • PDF

Fuzzy Control Algorithm for the Improvement of Auto-Vehicle's Comfortability (무인 자동차의 승차감 향상을 위한 퍼지 제어 알고리즘)

  • Bae, J.I.;Jo, B.K.;Kim, Y.S.;Ahn, D.S.;Yang, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3187-3188
    • /
    • 2000
  • Based on fuzzy control algorithm this paper constructed fuzzy controller for automated vehicles. For passenger's convenience especially comfortability controller need to reduce the frequency of input variable's changing. So we established membership functions for comfortability as well as speed following. It made possible to control comfortability directly. To demonstration the efficiency of fuzzy controller, we carried out simulation with a automobile's transfer function. Also we compared the difference of input variable. By comparing two controller's response, we can confirm the merit of fuzzy controller about comfortability. Fuzzy controller can reduce input changing frequency.

  • PDF

Depth Controller Design using Fuzzy Gain Scheduling Method of a Autonomous Underwater Vehicle - Verification by HILS (퍼지 이득 스케쥴링 기법을 이용한 무인 잠수정의 심도제어기 설계 - HILS 검증)

  • Hwang, Jong-Hyon;Park, Sewon;Kim, Moon-Hwan;Lee, Sang-Young;Hong, Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.791-796
    • /
    • 2013
  • This paper proposes a fuzzy logic gain scheduling method for depth controller of the AUV (Autonomous Underwater Vehicle). Gains of depth controller are calculated by using multi-loop root locus technique. Fuzzy logic based gain scheduling approach is used to modify multi-loop gains as control condition. It is illustrated by simulations that the proposed fuzzy logic gain scheduling method yields smaller rising time and overshoot compared to the fixed-gain controller. Finally, being implemented on real hardwares, all the proposed algorithms are validated with integrations of hardware and software altogether by HILS.

Stabilization Control of the Nonlinear System using A RVEGA ~. based Optimal Fuzzy Controller (RVEGA 최적 퍼지 제어기를 이용한 비선형 시스템의 안정화 제어에 관한 연구)

  • 이준탁;정동일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.393-403
    • /
    • 1997
  • In this paper, we proposed an optimal identification method of identifying the membership func¬tions and the fuzzy rules for the stabilization controller of the nonlinear system by RVEGA( Real Variable Elitist Genetic Algo rithm l. Although fuzzy logic controllers have been successfully applied to industrial plants, most of them have been relied heavily on expert's empirical knowl¬edge. So it is very difficult to determine the linguistic state space partitions and parameters of the membership functions and to extract the control rules. Most of conventional approaches have the drastic defects of trapping to a local minima. However, the proposed RVEGA which is similiar to the processes of natural evolution can optimize simulta¬neously the fuzzy rules and the parameters of membership functions. The validity of the RVEGA - based fuzzy controller was proved through applications to the stabi¬lization problems of an inverted pendulum system with highly nonlinear dynamics. The proposed RVEGA - based fuzzy controller has a swing -. up control mode(swing - up controller) and a stabi¬lization one(stabilization controller), moves a pendulum in an initial stable equilibrium point and a cart in an arbitrary position, to an unstable equilibrium point and a center of the rail. The stabi¬lization controller is composed of a hierarchical fuzzy inference structure; that is, the lower level inference for the virtual equilibrium point and the higher level one for position control of the cart according to the firstly inferred virtual equilibrium point. The experimental apparatus was imple¬mented by a DT -- 2801 board with AID, D/A converters and a PC - 586 microprocessor.

  • PDF

Design of Nonlinear Fuzzy I+PD Controller Using Simplified Indirect Inference Method (간편간접추론방법을 이용한 비선형 퍼지 I+PD 제어기의 설계)

  • Chai, Chang-Hyun;Chae, Seok;Park, Jae-Wan;Yoon, Myong-Kee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2898-2901
    • /
    • 1999
  • This paper describes the design of nonlinear fuzzy I+PD controller using simplified indirect inference method. First, the fuzzy I+PD controller is derived from the conventional continuous time linear I+PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional I+PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. Particularly when the process to be controlled is nonlinear When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one Proposed by D. Misir et at.

  • PDF