The Transactions of the Korean Institute of Electrical Engineers D
/
v.50
no.8
/
pp.361-366
/
2001
This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.
Kim, B.S.;Ryu, K.B.;Min, S.S.;Lee, K.C.;Kim, C.E.;Cho, K.B.
Proceedings of the KIEE Conference
/
1992.07a
/
pp.225-230
/
1992
In this paper, a new learning fuzzy logic controller(LFLC) is presented. The proposed controller is composed of the main control part and the learning part. The main control part is a fuzzy logic controller(FLC) based on linguistic rules and fuzzy inference. For the learning part, artificial neural network(ANN) is added to FLC so that the controller may adapt to unknown plant and environment. According to the output values of the ANN part, which is learned using error back-propagation algorithm, scale factors of the FLC part are determined. These scale factors transfer the range of values of input variables into corresponding universe of discourse in the FLC part in order to achieve good performance. The effectiveness of the proposed control strategy has been demonstrated through simulations involving the control of an unknown robot manipulator with load disturbance.
This paper describes the fuzzy PD controller using simplified indirect inference method. First, the fuzzy PD controller is derived from the conventional continuous time linear PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. particularly when the process to be controlled is nonlinear. As the SIIM is applied, the fuzzy Inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the Proposed method has the capability of the high speed inference and extending the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control Performance of the one Proposed by D. Misir et at. Final)y. we simulated the contour control of the X-Y tables with direct control strategies using the proposed fuzzy PD controller.
This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.55
no.4
/
pp.154-157
/
2006
This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.05a
/
pp.228-231
/
2000
A hybrid fuzzy controller by means of the genetic algorithms is presented. The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PlD's output in steady state by a fuzzy variable. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller. A auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller using genetic algorithms. The algorithms estimates automatical Iy the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA three kinds of estimation modes are effectively utilized. The HFCs are applied to the second process with time-delay. Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed in ITAE(Integral of the Time multiplied by the Absolute value of Error ) and other ways.
Based on fuzzy control algorithm this paper constructed fuzzy controller for automated vehicles. For passenger's convenience especially comfortability controller need to reduce the frequency of input variable's changing. So we established membership functions for comfortability as well as speed following. It made possible to control comfortability directly. To demonstration the efficiency of fuzzy controller, we carried out simulation with a automobile's transfer function. Also we compared the difference of input variable. By comparing two controller's response, we can confirm the merit of fuzzy controller about comfortability. Fuzzy controller can reduce input changing frequency.
Journal of Institute of Control, Robotics and Systems
/
v.19
no.9
/
pp.791-796
/
2013
This paper proposes a fuzzy logic gain scheduling method for depth controller of the AUV (Autonomous Underwater Vehicle). Gains of depth controller are calculated by using multi-loop root locus technique. Fuzzy logic based gain scheduling approach is used to modify multi-loop gains as control condition. It is illustrated by simulations that the proposed fuzzy logic gain scheduling method yields smaller rising time and overshoot compared to the fixed-gain controller. Finally, being implemented on real hardwares, all the proposed algorithms are validated with integrations of hardware and software altogether by HILS.
Journal of Advanced Marine Engineering and Technology
/
v.21
no.4
/
pp.393-403
/
1997
In this paper, we proposed an optimal identification method of identifying the membership func¬tions and the fuzzy rules for the stabilization controller of the nonlinear system by RVEGA( Real Variable Elitist Genetic Algo rithm l. Although fuzzy logic controllers have been successfully applied to industrial plants, most of them have been relied heavily on expert's empirical knowl¬edge. So it is very difficult to determine the linguistic state space partitions and parameters of the membership functions and to extract the control rules. Most of conventional approaches have the drastic defects of trapping to a local minima. However, the proposed RVEGA which is similiar to the processes of natural evolution can optimize simulta¬neously the fuzzy rules and the parameters of membership functions. The validity of the RVEGA - based fuzzy controller was proved through applications to the stabi¬lization problems of an inverted pendulum system with highly nonlinear dynamics. The proposed RVEGA - based fuzzy controller has a swing -. up control mode(swing - up controller) and a stabi¬lization one(stabilization controller), moves a pendulum in an initial stable equilibrium point and a cart in an arbitrary position, to an unstable equilibrium point and a center of the rail. The stabi¬lization controller is composed of a hierarchical fuzzy inference structure; that is, the lower level inference for the virtual equilibrium point and the higher level one for position control of the cart according to the firstly inferred virtual equilibrium point. The experimental apparatus was imple¬mented by a DT -- 2801 board with AID, D/A converters and a PC - 586 microprocessor.
This paper describes the design of nonlinear fuzzy I+PD controller using simplified indirect inference method. First, the fuzzy I+PD controller is derived from the conventional continuous time linear I+PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional I+PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. Particularly when the process to be controlled is nonlinear When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one Proposed by D. Misir et at.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.