• Title/Summary/Keyword: Fuzzy-C Means

Search Result 449, Processing Time 0.027 seconds

Identification of Fuzzy System Driven to Parallel Genetic Algorithm (병렬유전자 알고리즘을 기반으로한 퍼지 시스템의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.201-203
    • /
    • 2007
  • The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.

  • PDF

VS-FCM: Validity-guided Spatial Fuzzy c-Means Clustering for Image Segmentation

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.89-93
    • /
    • 2010
  • In this paper a new fuzzy clustering approach to the color clustering problem has been proposed. To deal with the limitations of the traditional FCM algorithm, we propose a spatial homogeneity-based FCM algorithm. Moreover, the cluster validity index is employed to automatically determine the number of clusters for a given image. We refer to this method as VS-FCM algorithm. The effectiveness of the proposed method is demonstrated through various clustering examples.

Driving Characteristics Classification of TCS Data Based on Fuzzy c-means Clustering Algorithm (Fuzzy c-means 알고리즘을 이용한 TCS 데이터 주행특성 분류 방법 연구)

  • Park, Won-Sik;Kim, Dong-Keun;Yang, Young-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1021-1024
    • /
    • 2009
  • 현재 사용되고 있는 통행시간 분류방법은 하나의 통행시간을 대푯값으로 가지고 있다. 이에 문제점은 고속도로 특성으로 규정 속도 이상의 속도로 주행하는 차량, 규정 속도 및 휴게소 이용차량, 운전자의 운전 습성, 통행 목적, 피로의 정도, 운전자 성향과 도로상황에 따라 통행시간이 다르게 나타나는 점이다. TCS(Toll Collection System) 자료는 고속도로의 다양한 특성이 포함되어 있으며, 대상 구간의 거리가 멀수록 목적지에 도달하는 통행시간의 분산이 커지는 특성 또한 보인다. 따라서 이를 처리하기 위한 효율적인 통행시간 분류, 구간대표통행시간 추출 알고리즘이 필요하다. 기존의 방법은 전체 통행차량의 통행시간을 감안한 방법으로 통행시간 예측시 정확성이 저하된다. 본 연구에서는 TCS 자료를 Fuzzy c-means 알고리즘을 이용하여 일일 고속도로 통행시간의 시간별 주행특성을 고려한 대푯 값을 추출하는 알고리즘을 제안하였다. 실제 서울-청주 구간을 운행한 TCS 자료를 가지고 실시한 실험으로, 주행특성 및 도로상황을 고려한 Fuzzy c-means를 이용한 통행시간 분류방법과 기존의 통행시간 분류 방법을 통한 통행시간을 PIFAB를 사용 TCS 자료의 실제 통행시간과 경로통행시간을 비교 평가하였다. 평가한 결과 본 연구에서 제안하는 Fuzzy c-means기법은 기존 방법인 MAD기법보다 75%, 신뢰구간(95%) 추출법 대비 81%의 정확성을 제고하였다.

Determining the Fuzzifier Values for Interval Type-2 Possibilistic Fuzzy C-means Clustering (Interval Type-2 Possibilistic Fuzzy C-means 클러스터링을 위한 퍼지화 상수 결정 방법)

  • Joo, Won-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Type-2 fuzzy sets are preferred over type-1 sets as they are capable of addressing uncertainty more efficiently. The fuzzifier values play pivotal role in managing these uncertainties; still selecting appropriate value of fuzzifiers has been a tedious task. Generally, based on observation particular value of fuzzifier is chosen from a given range of values. In this paper we have tried to adaptively compute suitable fuzzifier values of interval type-2 possibilistic fuzzy c-means (IT2 PFCM) for a given data. Information is extracted from individual data points using histogram approach and this information is further processed to give us the two fuzzifier values $m_1$, $m_2$. These obtained values are bounded within some upper and lower bounds based on interval type-2 fuzzy sets.

Program Development of Integrated Expression Profile Analysis System for DNA Chip Data Analysis (DNA칩 데이터 분석을 위한 유전자발연 통합분석 프로그램의 개발)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2001
  • A program for integrated gene expression profile analysis such as hierarchical clustering, K-means, fuzzy c-means, self-organizing map(SOM), principal component analysis(PCA), and singular value decomposition(SVD) was made for DNA chip data anlysis by using Matlab. It also contained the normalization method of gene expression input data. The integrated data anlysis program could be effectively used in DNA chip data analysis and help researchers to get more comprehensive analysis view on gene expression data of their own.

  • PDF

Improved Classification Algorithm using Extended Fuzzy Clustering and Maximum Likelihood Method

  • Jeon Young-Joon;Kim Jin-Il
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.447-450
    • /
    • 2004
  • This paper proposes remotely sensed image classification method by fuzzy c-means clustering algorithm using average intra-cluster distance. The average intra-cluster distance acquires an average of the vector set belong to each cluster and proportionates to its size and density. We perform classification according to pixel's membership grade by cluster center of fuzzy c-means clustering using the mean-values of training data about each class. Fuzzy c-means algorithm considered membership degree for inter-cluster of each class. And then, we validate degree of overlap between clusters. A pixel which has a high degree of overlap applies to the maximum likelihood classification method. Finally, we decide category by comparing with fuzzy membership degree and likelihood rate. The proposed method is applied to IKONOS remote sensing satellite image for the verifying test.

  • PDF

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

Switching Regression Analysis via Fuzzy LS-SVM

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.609-617
    • /
    • 2006
  • A new fuzzy c-regression algorithm for switching regression analysis is presented, which combines fuzzy c-means clustering and least squares support vector machine. This algorithm can detect outliers in switching regression models while yielding the simultaneous estimates of the associated parameters together with a fuzzy c-partitions of data. It can be employed for the model-free nonlinear regression which does not assume the underlying form of the regression function. We illustrate the new approach with some numerical examples that show how it can be used to fit switching regression models to almost all types of mixed data.

  • PDF

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.