• Title/Summary/Keyword: Fuzzy-C Means

Search Result 449, Processing Time 0.037 seconds

An improved fuzzy c-means method based on multivariate skew-normal distribution for brain MR image segmentation

  • Guiyuan Zhu;Shengyang Liao;Tianming Zhan;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2082-2102
    • /
    • 2024
  • Accurate segmentation of magnetic resonance (MR) images is crucial for providing doctors with effective quantitative information for diagnosis. However, the presence of weak boundaries, intensity inhomogeneity, and noise in the images poses challenges for segmentation models to achieve optimal results. While deep learning models can offer relatively accurate results, the scarcity of labeled medical imaging data increases the risk of overfitting. To tackle this issue, this paper proposes a novel fuzzy c-means (FCM) model that integrates a deep learning approach. To address the limited accuracy of traditional FCM models, which employ Euclidean distance as a distance measure, we introduce a measurement function based on the skewed normal distribution. This function enables us to capture more precise information about the distribution of the image. Additionally, we construct a regularization term based on the Kullback-Leibler (KL) divergence of high-confidence deep learning results. This regularization term helps enhance the final segmentation accuracy of the model. Moreover, we incorporate orthogonal basis functions to estimate the bias field and integrate it into the improved FCM method. This integration allows our method to simultaneously segment the image and estimate the bias field. The experimental results on both simulated and real brain MR images demonstrate the robustness of our method, highlighting its superiority over other advanced segmentation algorithms.

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

The Design of an Adaptive Neuro-Fuzzy Controller for a Temperature Control System (온도 제어 시스템을 위한 뉴로-퍼지 제어기의 설계)

  • 곽근창;김성수;이상혁;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.493-496
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy controller using the conditional fuzzy c-means(CFCM) methods is proposed. Usually, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Finally, we applied the proposed method to the water path temperature control system and obtained a better performance than previous works.

  • PDF

FCM Algorithm for Application to Fuzzy Control

  • KAMEI, Katsuari
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.619-624
    • /
    • 1998
  • This paper presents a new clustering algorithm called FCM algorithm for the design of fuzzy controller. FCM is an extended version of FCM(Fuzzy c-Means) algorithm and can estimate the number of clusters automatically and give membership grades $u_{ik}$ suitable for making fuzzy control rules. This paper also shows an example of its application to the line pursuit control of a car.

  • PDF

The Design of GA-based TSK Fuzzy Classifier and Its application (GA기반 TSK 퍼지 분류기의 설계 및 응용)

  • 곽근창;김승석;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

A Systematic Approach to Improve Fuzzy C-Mean Method based on Genetic Algorithm

  • Ye, Xiao-Yun;Han, Myung-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • As computer technology continues to develop, computer networks are now widely used. As a result, there are many new intrusion types appearing and information security is becoming increasingly important. Although there are many kinds of intrusion detection systems deployed to protect our modern networks, we are constantly hearing reports of hackers causing major disruptions. Since existing technologies all have some disadvantages, we utilize algorithms, such as the fuzzy C-means (FCM) and the support vector machine (SVM) algorithms to improve these technologies. Using these two algorithms alone has some disadvantages leading to a low classification accuracy rate. In the case of FCM, self-adaptability is weak, and the algorithm is sensitive to the initial value, vulnerable to the impact of noise and isolated points, and can easily converge to local extrema among other defects. These weaknesses may yield an unsatisfactory detection result with a low detection rate. We use a genetic algorithm (GA) to help resolve these problems. Our experimental results show that the combined GA and FCM algorithm's accuracy rate is approximately 30% higher than that of the standard FCM thereby demonstrating that our approach is substantially more effective.

A New Fuzzy Clustering Algorithm (새로운 퍼지 군집화 알고리즘)

  • Kim, Jae-Young;Park, Dong-Chul;Han, Ji-Ho;Thuy, Huynh Thi Thanh;Song, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1905_1906
    • /
    • 2009
  • 본 논문은 데이터의 군집화를 효율적으로 수행하기 위하여 새로운 군집화 알고리즘을 제안한다. 제안되는 군집화 알고리즘은 Fuzzy C-Means (FCM)에 기반을 두는데, FCM 알고리즘은 모든 데이터에 대한 거리에 기본을 둔 멤버쉽을 기초로 하기 때문에 잡음에 약한 제약을 지니고 있었다. 이를 개선하기 위하여, 제안되었던 PCM(Probabilistic C-Means), FPCM(Fuzzy PCM), PFCM(Probabilistic FCM) 등 여러가지 알고리즘이 제안 되었다. 그러나 이들 알고리즘들은 초기 파라미터값 설정과 과다한 계산양에 따른 문제가 증가하였으며, 또한 잡음에 어느 정도 민감한 문제점을 지니고 있었다. 이 논문에서는 잡음에 대해 효과적으로 대응할 수 있는 새로운 군집화 알고리즘을 제안하고, 전통적인 군집화를 위한 Iris 데이터에 대한 실험을 통하여 효용성을 확인하였다.

  • PDF

A Dynamic Ontology-based Multi-Agent Context-Awareness User Profile Construction Method for Personalized Information Retrieval

  • Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.270-276
    • /
    • 2012
  • With the increase in amount of data and information available on the web, there have been high demands on personalized information retrieval services to provide context-aware services for the web users. This paper proposes a novel dynamic multi-agent context-awareness user profile construction method based on ontology to incorporate concepts and properties to model the user profile. This method comprehensively considers the frequency and the specific of the concept in one document and its corresponding domain ontology to construct the user profile, based on which, a fuzzy c-means clustering method is adopted to cluster the user's interest domain, and a dynamic update policy is adopted to continuously consider the change of the users' interest. The simulation result shows that along with the gradual perfection of the our user profile, our proposed system is better than traditional semantic based retrieval system in terms of the Recall Ratio and Precision Ratio.

An ACA-based fuzzy clustering for medical image segmentation (적응적 개미군집 퍼지 클러스터링 기반 의료 영상분할)

  • Yu, Jeong-Min;Jeon, Moon-Gu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.367-368
    • /
    • 2012
  • Possibilistic c-means (PCM) 알고리즘은 fuzzy c-means (FCM) 의 노이즈 민감성을 극복하기 위해 제안 되었다. 하지만, PCM 은 사용되는 시스템 파라미터들의 초기화와 coincident 클러스터링 문제로 인하여 그 성능이 민감하다. 본 논문에서는 이러한 문제점들을 극복하기 위해 개미군집 알고리즘(Ant colony algorithm)을 이용한 퍼지 클러스터링(fuzzy clustering) 알고리즘을 제안한다. 먼저, 개미군집 알고리즘을 통해 PCM 의 클러스터 개수 및 중심 값 파라미터를 최적화 하고, 미리 분류된 화소 정보를 이용하여 PCM 의 coincident 클러스터링 문제를 해결하였다. 제안된 알고리즘의 효율성을 의료 영상 분할 문제에 적용하여 확인하였다.

Improved Access Control using Context-Aware Security Service (상황인식 보안 서비스를 이용한 개선된 접근제어)

  • Yang, Seok-Hwan;Chung, Mok-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.133-142
    • /
    • 2010
  • As the ubiquitous technology has penetrated into almost every aspect of modern life, the research of the security technology to solve the weakness of security in the ubiquitous environment is received much attention. Because, however, today's security systems are usually based on the fixed rules, many security systems can not handle diverse situations in the ubiquitous environment appropriately. Although many existing researches on context aware security service are based on ACL (Access Control List) or RBAC (Role Based Access Control), they have an overhead in the management of security policy and can not manipulate unexpected situations. Therefore, in this paper, we propose a context-aware security service providing multiple authentications and authorization from a security level which is decided dynamically in a context-aware environment using FCM (Fuzzy C-Means) clustering algorithm and Fuzzy Decision Tree. We show proposed model can solve typical conflict problems of RBAC system due to the fixed rules and improve overhead problem in the security policy management. We expect to apply the proposed model to the various applications using contextual information of the user such as healthcare system, rescue systems, and so on.