• Title/Summary/Keyword: Fuzzy weights

Search Result 292, Processing Time 0.029 seconds

A Method for Fuzzy-Data Processing of Cooked-rice Portion Size Estimation (식품 눈대중량 퍼지데이타의 처리방안에 관한 연구)

  • 김명희
    • Journal of Nutrition and Health
    • /
    • v.27 no.8
    • /
    • pp.856-863
    • /
    • 1994
  • To develop a optimized method for educing the errors associated with the estimation of portion size of foods, fuzzy-dta processing of portion size was performed. Cooked-rice was chosen as a food item. The experiment was conducted in two parts. First, to study the conceptions of respondents to bowl size(large, medium, small), 11 bowls of different size and shape were used and measured the actual weights of cooked-rice. Second, to study the conceptions of respondents to volume(1, 1/2, 1/3, 1/4), 16 different volumes of cooked-rice in bowls of same size and shape were used. Respondents for this study were 31 graduate students. After collecting the data of respondents to size and volume, fuzzy sets of size and volume were produced. The critical values were calculated by defuzzification(mean of maximum method, center of area method). The differences of the weights of cooked-rice in various bowl size and volume between the critical values and the calculated values by average portion size using in conventional methods were compared. The results hows large inter-subject variation in conception to bowl size, especially in large size. However, conception of respondents to volume is relatively accurate. Conception to bowl size seems to be influenced by bowl shape. Considering that the new fuzzy set was calculated by cartesian product(bowl size and volume), bowl shape should be considered in estimation of bowl size to make more accurate fuzzy set for cooked-rice portion size. The limitations of this study were discussed. If more accurate data for size and volume of many other food items are collected by the increased number of respondents, reducing the errors associated with the estimation of portion size of foods and rapid processing will be possible by constructing computer processing systems.

  • PDF

The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization (퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화)

  • Baek, Jin-Yeol;Park, Byaung-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

An Improved Multilevel Fuzzy Comprehensive Evaluation to Analyse on Engineering Project Risk

  • LI, Xin;LI, Mufeng;HAN, Xia
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.5
    • /
    • pp.1-6
    • /
    • 2022
  • Purpose: To overcome the question that depends too much on expert's subjective judgment in traditional risk identification, this paper structure the multilevel generalized fuzzy comprehensive evaluation mathematics model of the risk identification of project, to research the risk identification of the project. Research design, data and methodology: This paper constructs the multilevel generalized fuzzy comprehensive evaluation mathematics model. Through iterative algorithm of AHP analysis, make sure the important degree of the sub project in risk analysis, then combine expert's subjective judgment with objective quantitative analysis, and distinguish the risk through identification models. Meanwhile, the concrete method of multilevel generalized fuzzy comprehensive evaluation is probed. Using the index weights to analyse project risks is discussed in detail. Results: The improved fuzzy comprehensive evaluation algorithm is proposed in the paper, at first the method of fuzzy sets core is used to optimize the fuzzy relation matrix. It improves the capability of the algorithm. Then, the method of entropy weight is used to establish weight vectors. This makes the computation process fair and open. And thereby, the uncertainty of the evaluation result brought by the subjectivity can be avoided effectively and the evaluation result becomes more objective and more reasonable. Conclusions: In this paper, we use an improved fuzzy comprehensive evaluation method to evaluate a railroad engineering project risk. It can give a more reliable result for a reference of decision making.

A Study on a Multi-Attribute Decision Making Process Using Fuzzy Neural Network

  • Hashiyama, Tomonori;Furuhashi, Takeshi;Uchikawa, Yoshiki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.810-813
    • /
    • 1993
  • In multi-attribute decision making, human beings influenced with various factors often change their decisions. This paper presents a new approach to express the changes in the decision makings when they got new information. The new approach uses the fuzzy neural network (FNN) which has been proposed by the authors. The FNN identifies the weights to the attributes with the back propagation learning. Through experiments, it is shown that the changes of subjects' decision can be described by the changes of their weights to the attributes.

  • PDF

Neural Network Parameter Estimation of IPMSM Drive using AFLC (AFLC를 이용한 IPMSM 드라이브의 NN 파라미터 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.293-300
    • /
    • 2011
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance and adaptive fuzzy learning contrroller(AFLC) for speed control in IPMSM Drives. AFLC is chaged fuzzy rule base by rule base modifier for robust control of IPMSM. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator and AFLC is confirmed by comparing to conventional algorithm.

Fuzzy-ART Basis Equalizer for Satellite Nonlinear Channel

  • Lee, Jung-Sik;Hwang, Jae-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • This paper discusses the application of fuzzy-ARTMAP neural network to compensate the nonlinearity of satellite communication channel. The fuzzy-ARTMAP is the class of ART(adaptive resonance theory) architectures designed fur supervised loaming. It has capabilities not fecund in other neural network approaches, that includes a small number of parameters, no requirements fur the choice of initial weights, automatic increase of hidden units, and capability of adding new data without retraining previously trained data. By a match tracking process with vigilance parameter, fuzzy-ARTMAP neural network achieves a minimax teaming rule that minimizes predictive error and maximizes generalization. Thus, the system automatically leans a minimal number of recognition categories, or hidden units, to meet accuracy criteria. As a input-converting process for implementing fuzzy-ARTMAP equalizer, the sigmoid function is chosen to convert actual channel output to the proper input values of fuzzy-ARTMAP. Simulation studies are performed over satellite nonlinear channels. QPSK signals with Gaussian noise are generated at random from Volterra model. The performance of proposed fuzzy-ARTMAP equalizer is compared with MLP equalizer.

Determination of Risk Level Using Fuzzy Multi-Criteria Decision Method (퍼지 다기준 의사결정기법을 이용한 위험수준평가)

  • Jung, Sang-Yun;Cho, Sung-Ku
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.627-638
    • /
    • 1998
  • For any hazardous operation or risky project to be carried out safely and economically, it is of the utmost importance to formulate proper risk management policies based on the rational assessment of the risk levels of various potential hazards. In this paper, a Fuzzy Multi-Criteria Decision Making(FMCDM) method for risk assessment is proposed. The method evaluates, on the basis of fuzzy set theory, the risk level of a risky situation by aggregating the assessed levels of risk factors and their subjective weights. The method also allows some flexibility for the future users in the sense that, first, the relative importance weights for the three risk factors can be adjusted according to the nature of projects or systems and, second, the users have the choice between the two types of risk assessment results, that is, the assessed risk levels or the ranks of the risk situations. A numerical example for the proposed FMCDM method is provided to illustrate the computational procedure. To see how the suggested FMCDM method describes well people's perceived risk level, we compared the risk values derived from the suggested method with the subjective risk evaluations for ten risky situations.

  • PDF

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

Image Restoration Algorithm Damaged by Mixed Noise using Fuzzy Weights and Noise Judgment (퍼지 가중치와 잡음판단을 이용한 복합잡음에 훼손된 영상의 복원 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.133-135
    • /
    • 2022
  • With the development of IoT and AI technologies and media, various digital devices are being used, and unmanned and automation is progressing rapidly. In particular, high-level image processing technology is required in fields such as smart factories, autonomous driving technology, and intelligent CCTV. However, noise present in the image affects processes such as edge detection and object recognition, and causes deterioration of system accuracy and reliability. In this paper, we propose a filtering algorithm using fuzzy weights to reconstruct images damaged by complex noise. The proposed algorithm obtains a reference value using noise judgment and calculates the final output by applying a fuzzy weight. Simulation was conducted to verify the performance of the proposed algorithm, and the result image was compared with the existing filter algorithm and evaluated.

  • PDF

Proposal of Weight Adjustment Methods Using Statistical Information in Fuzzy Weighted Mean Classifiers (퍼지 가중치 평균 분류기에서 통계 정보를 활용한 가중치 설정 기법의 제안)

  • Woo, Young-Woon;Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.9-15
    • /
    • 2009
  • The fuzzy weighted mean classifier is one of the most common classification models and could achieve high performance by adjusting the weights. However, the weights were generally decided based on the experience of experts, which made the resulting classifiers to suffer the lack of consistency and objectivity. To resolve this problem, in this paper, a weight deciding method based on the statistics of the data is introduced, which ensures the learned classifiers to be consistent and objective. To investigate the effectiveness of the proposed methods, Iris data set available from UCI machine learning repository is used and promising results are obtained.