• Title/Summary/Keyword: Fuzzy region

Search Result 288, Processing Time 0.028 seconds

A Fuzzy Logic Based Bin-Picking Technique (퍼지노리를 이용한 Bin-Picking방법)

  • 김태원;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.938-946
    • /
    • 1992
  • A novel 2-dimensional matched filter of the parallel-jaw type using fuzzy logic is proposed for bin picking. Specifically, the averaged pixel intensity of the windowed region for the filtering is considered to be fuzzy. Also membership functions for darkness and brightness are designed by employing the intensity histogram of the image. Then a rule is given to know how much a windowed region can be a possible holdsite. Furthermore eight rules are made to determine the part orientation, where Mamdani's reasoning method is applied. The proposed technique shows better performances than that of the conventional matched filtering technique in the following senses` 1) most of holdsites determined by the proposed technique are not concentrated at the locations nearly the end of part and 2) our filter is rather insensitive to noises than the conventional method. To show the validities of our proposed technique, some experimental results are illustrated and compared with the results by conventional matched filter technique.

  • PDF

A Study on the Use of Genetic Algorithm for Compensate a Intelligent Controller (지능제어기 보상을 위한 유전 알고리즘 이용에 관한 연구)

  • Shin, Wee-Jae;Moon, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • The fuzzy control, neural network and genetic algorithm(GA) are algorithms to make the intelligence of system more higher. In this paper, we optimized the fuzzy controller using a genetic algorithm for desire response. Also a compensated fuzzy controller has dual rules. One control rule used to decrease the overshoot and rise time occurring in transient response region and another fuzzy control rule use to decrease the steady state error and rapildy to converge at the convergence region. GA is necessary to optimal the exchange time of the two fuzzy control rule base. Fuzzy-GA controller have a process of reproduction, crossover and mutation and we experimented by hydraulic servo motor control system We could observe that compensated Fuzzy-GA controller have good control performance compare to the fuzzy control technique have two rule base table.

  • PDF

Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

  • Kim, Sung-Woo;Park, Sang-Young;Park, Chan-Deok
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.389-395
    • /
    • 2012
  • The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

AWGN Removal Algorithm using Switching Fuzzy Function and Weight (스위칭 퍼지 함수와 가중치를 사용한 AWGN 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.121-123
    • /
    • 2021
  • Image processing is being used in various forms in important fields of the 4th industrial revolution, such as artificial intelligence, smart factories, and the IoT industry. In particular, in systems that require data processing such as object tracking, medical images, and object recognition, noise removal is used as a preprocessing step, but the existing algorithm has a drawback in that blurring occurs in the filtering process. Therefore, in this paper, we propose a filter algorithm using switching fuzzy weights. The proposed algorithm switches the fuzzy function by dividing the low-frequency region and the high-frequency region by the standard deviation of the filtering mask, and obtains the final output according to the fuzzy weight. The proposed algorithm showed improved results compared to the existing method, and showed excellent characteristics in the region where the high-frequency component is strong.

  • PDF

Improvement on Fuzzy C-Means Using Principal Component Analysis

  • Choi, Hang-Suk;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.301-309
    • /
    • 2006
  • In this paper, we show the improved fuzzy c-means clustering method. To improve, we use the double clustering as principal component analysis from objects which is located on common region of more than two clusters. In addition we use the degree of membership (probability) of fuzzy c-means which is the advantage. From simulation result, we find some improvement of accuracy in data of the probability 0.7 exterior and interior of overlapped area.

  • PDF

A Study on the Development of Regional Innovative Capability Indices Using Fuzzy Multi-Criteria Decision Making (퍼지다기준 의사결정기법을 이용한 지역혁신역량지수의 도출)

  • Heo, Jae-Yong
    • Journal of Technology Innovation
    • /
    • v.16 no.1
    • /
    • pp.1-21
    • /
    • 2008
  • We attempt to make regional innovative capability indices for overall understanding of regional innovation. We'll analyze various indicators on it using fuzzy set theory and compare regional innovative capabilities of 16 regions in Korea. The fuzzy set theory can reflect more normally the uncertainty of the stakeholder's responses than other decision making analysis methods. The overall results suggest that experts on regional innovation rank GRDP most important and Daejeon is the most innovative region. Building up regional innovative capabilities should be made for more balanced national land development.

  • PDF

Image Segmentation and Labeling Using Clustering and Fuzzy Algorithm (Clustering 기법과 Fuzzy 기법을 이용한 영상 분할과 라벨링)

  • 이성규;김동기;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.241-241
    • /
    • 2000
  • In this Paper, we present a new efficient algorithm that can segment an object in the image. There are many algorithms for segmentation and many studies for criteria or threshold value. But, if the environment or brightness is changed, their would not be suitable. Accordingly, we apply a clustering algorithm for adopting and compensating environmental factors. And applying labeling method, we try arranging segment by the similarity that calculated with the fuzzy algorithm. we also present simulations for searching an object and show that the algorithm is somewhat more efficient than the other algorithm.

  • PDF

Ellipsoid Fuzzy-ART for Pattern Recognition Improvement (패턴인식을 위한 타원형 Fuzzy-ART)

  • 강성호;정성부;임중규;이현관;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.305-308
    • /
    • 2003
  • This paper proposed Ellipsoid Fuzzy-ART (Fuzzy-Adaptive Resonance Theory) for recognition performance improvement to use Mahalanobis distance. The suggested method uses Mahalanobis distance to decide pattern boundary region at vector space. In order to confirm the validity of proposed method, comparison of the performance has made between existing method and the proposed method through simulation.

  • PDF

Design & application of adaptive fuzzy-neuro controllers (적응 퍼지-뉴로 제어기의 설계와 응용)

  • Kang, Kyeng-Wuon;Kim, Yong-Min;Kang, Hoon;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.710-717
    • /
    • 1993
  • In this paper, we focus upon the design and applications of adaptive fuzzy-neuro controllers. An intelligent control system is proposed by exploiting the merits of two paradigms, a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to update the fuzzy control rules on-line with the output error. And, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

Enhancement Alogorithm of Portal Image using Neuo-Fuzzy (뉴로 퍼지를 이용한 포탈 영상의 개선 알고리듬의 연구)

  • 허수진;신동익
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.527-535
    • /
    • 2000
  • For a reliable patient set-up verification, better portal films are needed to track relevant features. Simulator films are compared with portal films as a reference image in radiotherapy planning. This shows some possibilities of the use of image information of simulator images for enhancement and restorations of portal images which are very poor in quality compared with the simulator images. This paper present an approach that combine an associative memory, a kind of artificial neural networks with fuzzy image enhancement technique using genetic algorithm which determines the fuzzy region of membership function by the use of maximum entropy principles. A higher portal image quality than conventional technique is achieved.

  • PDF