• Title/Summary/Keyword: Fuzzy region

Search Result 288, Processing Time 0.033 seconds

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

An Edge Detection for Face Feature Extraction using λ-Fuzzy Measure (λ-퍼지척도를 이용한 얼굴특징의 윤곽선 검출)

  • Park, In-Kue;Ahn, Bo-Hyeok;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.75-79
    • /
    • 2009
  • In this paper the method was proposed which uses ${\lambda}$-fuzzy measure to detect the edge of the features of the face region. In the conventional method the features was founded using valley, brightness and edge. This method had its drawbacks that it is so sensitive to the external noises and environments. This paper proposed ${\lambda}$-fuzzy measure to cope with this drawbacks. By considering each weight of the pixels the integral evaluation was considered using the center of area method. Thus the continuity of the edge was kept by way of the neighborhood information and the reduction of time complexity wad resulted in.

  • PDF

High Precision Control of Servo Control System Using The Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 서보 제어 시스템의 정밀제어)

  • 조정환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.110-115
    • /
    • 2002
  • This paper proposes the adaptive fuzzy control system using the microprocessesor for high precision control of automation systems which exist non-linearities such as saturation, relays, hysteresis, and dead zones. The proposed system which provides the improvement in terms of the control region in transient and adaptive control, first used the frequence-locked mothed driving a system to generate a output voltage proportional to the frequency diffierence of relnence input signal and feedback signal for fast transient response,, and when the error reaches the preset value, used the adaptive fuzzy logic for precision control. The theoretical and experimental studies have been carried out. The presented results from the above investigation show considerable improved performance in the precision control of servo control systems.

Image Contrast Enhancement by Illumination Change Detection (조명 변화 감지에 의한 영상 콘트라스트 개선)

  • Odgerel, Bayanmunkh;Lee, Chang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • There are many image processing based algorithms and applications that fail when illumination change occurs. Therefore, the illumination change has to be detected then the illumination change occurred images need to be enhanced in order to keep the appropriate algorithm processing in a reality. In this paper, a new method for detecting illumination changes efficiently in a real time by using local region information and fuzzy logic is introduced. The effective way for detecting illumination changes in lighting area and the edge of the area was selected to analyze the mean and variance of the histogram of each area and to reflect the changing trends on previous frame's mean and variance for each area of the histogram. The ways are used as an input. The changes of mean and variance make different patterns w hen illumination change occurs. Fuzzy rules were defined based on the patterns of the input for detecting illumination changes. Proposed method was tested with different dataset through the evaluation metrics; in particular, the specificity, recall and precision showed high rates. An automatic parameter selection method was proposed for contrast limited adaptive histogram equalization method by using entropy of image through adaptive neural fuzzy inference system. The results showed that the contrast of images could be enhanced. The proposed algorithm is robust to detect global illumination change, and it is also computationally efficient in real applications.

Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo (함경북도 내 미래 알팔파 재배의 기후적합도 앙상블 전망)

  • Hyun Seung Min;Hyun Shinwoo;Kim Kwang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.2
    • /
    • pp.71-82
    • /
    • 2024
  • It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF

Design of Intelligent Fuzzy Controller for Nonlinear System Using Genetic Algorithm (유전알고리즘을 이용한 비선형 시스템의 지능형 퍼지 제어기 설계)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.593-597
    • /
    • 2004
  • This paper presents the new design method of fuzzy control system for nonlinear system. Many conventional design methods for fuzzy controller find the control gain for stabilizing fuzzy controller with some mathematical approaches. However, there exist some controllers which are hard to design with mathematical approach. In order to solve these problems, we propose the intelligent design method for fuzzy controller by using genetic algorithm with evolution strategy. The genetic algorithm with evolution strategy finds the control gain by changing the evolution region of chromosome. Finally, an application example of stabilizing a cart-pole typed inverted pendulum system will be given to show the stabilizability of the fuzzy controller.

Improved FCM Algorithm using Entropy-based Weight and Intercluster (엔트로피 기반의 가중치와 분포크기를 이용한 향상된 FCM 알고리즘)

  • Kwak Hyun-Wook;Oh Jun-Taek;Sohn Young-Ho;Kim Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.1-8
    • /
    • 2006
  • This paper proposes an improved FCM(Fuzzy C-means) algorithm using intercluster and entropy-based weight in gray image. The fuzzy clustering methods have been extensively used in the image segmentation since it extracts feature information of the region. Most of fuzzy clustering methods have used the FCM algorithm. But, FCM algorithm is still sensitive to noise, as it does not include spatial information. In addition, it can't correctly classify pixels according to the feature-based distributions of clusters. To solve these problems, we applied a weight and intercluster to the traditional FCM algorithm. A weight is obtained from the entropy information based on the cluster's number of neighboring pixels. And a membership for one pixel is given based on the information considering the feature-based intercluster. Experiments has confirmed that the proposed method was more tolerant to noise and superior to existing methods.

Automatic Extraction of Canine Cataract Area with Fuzzy Clustering (퍼지 클러스터링을 이용한 반려견의 백내장 영역 자동 추출)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1428-1434
    • /
    • 2018
  • Canine cataract is developed with aging and can cause the blindness or surgical treatment if not treated timely. In this paper, we propose a method for extracting cataract suspicious areas automatically with FCM(Fuzzy C_Means) algorithm to overcome the weakness of previously attempted ART2 based method. The proposed method applies the fuzzy stretching technique and the Max-Min based average binarization technique to the dog eye images photographed by simple devices such as mobile phones. After applying the FCM algorithm in quantization, we apply the brightness average binarization method in the quantized region. The two binarization images - Max-Min basis and brightness average binarization - are ANDed, and small noises are removed to extract the final cataract suspicious areas. In the experiment with 45 dog eye images with canine cataract, the proposed method shows better performance in correct extraction rate than the ART2 based method.

On the Effect of ON-DOCK System to the Sharpening of Competitiveness Edge of the Pusan Port (ON-DOCK 서비스 시스템이 부산항 경쟁력 향상에 미치는 영향)

  • Yang, W.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • Port competition is generally classified into two type of inter-domestic ports and intermational ports and the latter is measured how to secure the function of intermediacy for foreign cargoes among competing parts. In the Northeast Asia top 20 world container ports such as Pusan, Kobe, Yokohama and Kaohsiung are struggling to induce transshipment containers generated in the North China region. This paper aims to analyze and evaluate the competitive factors of the said ports such as port site facilities expenses service level and flexibility of management and operations and suggest the feasible strategies that the Pusan Port to be viable transshipment center in the region. The evaluation is attempted twice. First attempt is evaluated by present conditions of each port and second attempt by upgraded conditions of evaluation value such as port service level and flexibility of port management and operations resulted from the implementation of the ON-DOCK service system. The results of evaluation are as follows; (1) Port competitiveness of first evaluation is ranked in Kobe=Kaohsiung >Pusan>Yokohama. (2) Second evaluation is resulted in Kobe> Pusan= Kaohsiung>Yokohama. According to this results the competitiveness edge of the Pusan Port is able to strengthen by implementation of the ON-DOCk system.

  • PDF