• Title/Summary/Keyword: Fuzzy region

Search Result 288, Processing Time 0.031 seconds

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems (퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.360-366
    • /
    • 2008
  • The initial fuzzy partitions in fuzzy rule-based classification systems are determined by considering the domain region of each attribute with the given data, and the optimal classification boundaries within the fuzzy partitions can be discovered by tuning their parameters using various learning processes such as neural network, genetic algorithm, and so on. In this paper, we propose a selection method for fuzzy partition based on statistical information to maximize the performance of pattern classification without learning processes where statistical information is used to extract the uncertainty regions (i.e., the regions which the classification boundaries in pattern classification problems are determined) in each input attribute from the numerical data. Moreover the methods for extracting the candidate rules which are associated with the partition intervals generated by statistical information and for minimizing the coupling problem between the candidate rules are additionally discussed. In order to show the effectiveness of the proposed method, we compared the classification accuracy of the proposed with those of conventional methods on the IRIS and New Thyroid Cancer data. From experimental results, we can confirm the fact that the proposed method only considering statistical information of the numerical patterns provides equal to or better classification accuracy than that of the conventional methods.

Space Partition using Context Fuzzy c-Means Algorithm for Image Segmentation (영상 분할을 위한 Context Fuzzy c-Means 알고리즘을 이용한 공간 분할)

  • Roh, Seok-Beom;Ahn, Tae-Chon;Baek, Yong-Sun;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.368-374
    • /
    • 2010
  • Image segmentation is the basic step in the field of the image processing for pattern recognition, environment recognition, and context analysis. The Otsu's automatic threshold selection, which determines the optimal threshold value to maximize the between class scatter using the distribution information of the normalized histogram of a image, is the famous method among the various image segmentation methods. For the automatic threshold selection proposed by Otsu, it is difficult to determine the optimal threshold value by considering the sub-region characteristic of the image because the Otsu's algorithm analyzes the global histogram of a image. In this paper, to alleviate this difficulty of Otsu's image segmentation algorithm and to improve image segmentation capability, the original image is divided into several sub-images by using context fuzzy c-means algorithm. The proposed fuzzy Otsu threshold algorithm is applied to the divided sub-images and the several threshold values are obtained.

A Semiconductor Defect Inspection Using Fuzzy Reasoning Method (퍼지 추론 기법을 이용한 반도체 불량 검사)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1551-1556
    • /
    • 2010
  • In this paper, we propose a new inspection method that applies fuzzy reasoning method considering the difference of brightness and intensity of illumination by bend together. In the preprocessing phase, we compensate the degree of semiconductor images with bilinear interpolation and moment-rotation. Then we use fuzzy reasoning method with the difference of brightness from error region by pattern matching and the difference of intensity of illumination from bends. Then the result is difuzzified and applied to the final inspection process. In experiment which uses 30 real world semiconductors with strait shots and side shots, the proposed method successfully discard the false positive identified by conventional brightness comparison only method without any loss of misidentification.

A study on the color image segmentation using the fuzzy Clustering (퍼지 클러스터링을 이용한 칼라 영상 분할)

  • 이재덕;엄경배
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.109-112
    • /
    • 1999
  • Image segmentation is the critical first step in image information extraction for computer vision systems. Clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are divided from the fuzzy c-means(FCM) algorithm. The FCM algorithm uses fie probabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belonging or compatibility. Moreover, the FCM algorithm has considerable trouble under noisy environments in the feature space. Recently, a possibilistic approach to clustering(PCM) for solving above problems was proposed. In this paper, we used the PCM for color image segmentation. This approach differs from existing fuzzy clustering methods for color image segmentation in that the resulting partition of the data can be interpreted as a possibilistic partition. So, the problems in the FCM can be solved by the PCM. But, the clustering results by the PCM are not smoothly bounded, and they often have holes. The region growing was used as a postprocessing after smoothing the noise points in the pixel seeds. In our experiments, we illustrate that the PCM us reasonable than the FCM in noisy environments.

  • PDF

Temperature Control of a CSTR using Fuzzy Gain Scheduling (퍼지 게인 스케쥴링을 이용한 CSTR의 온도 제어)

  • Kim, Jong-Hwa;Ko, Kang-Young;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.839-845
    • /
    • 2013
  • A CSTR (Continuous Stirred Tank Reactor) is a highly nonlinear process with varying parameters during operation. Therefore, tuning of the controller and determining the transition policy of controller parameters are required to guarantee the best performance of the CSTR for overall operating regions. In this paper, a methodology employing the 2DOF (Two-Degree-of-Freedom) PID controller, the anti-windup technique and a fuzzy gain scheduler is presented for the temperature control of the CSTR. First, both a local model and an EA (Evolutionary Algorithm) are used to tune the optimal controller parameters at each operating region by minimizing the IAE (Integral of Absolute Error). Then, a set of controller parameters are expressed as functions of the gain scheduling variable. Those functions are implemented using a set of "if-then" fuzzy rules, which is of Sugeno's form. Simulation works for reference tracking, disturbance rejecting and noise rejecting performances show the feasibility of using the proposed method.

Robust Vibration Control of Smart Structures via Discrete-Time Fuzzy-Sliding Modes (이산시간 퍼지-슬라이딩모드를 이용한 스마트구조물의 강건진동제어)

  • Choi, Seung-Bok;Kim, Myoung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3560-3572
    • /
    • 1996
  • This paper presents a new discrete-time fuzzy-sliding mode controller for robust vibration control of a smart structure featuring a piezofilm actuator. A governong equation of motion for the smart beam structure is derived and discrete-time codel with mismatched uncertainties such as parameter variations is constructed ina state space. A discrete-time sliding mode control system consisting of an equivalent controller and a discontinuous controller is formulated. In the design of the equivalent part, so called an equivalent controller separation method is adopted to achieve vzster convergence to a sliding surface without extension of a sliding region, in which the system robustness maynot be guaranteed. On the other hand, the discontinuous part is constructed on the basis of both the sliding and the convergence conditions using a time-varying feedback gain. The sliding moide controller is then incorporated with a fuzzy technique to appropriately determine principal control parameters such as a discountinuous feedback gain. Experimental implementation on the forced and random vibraiton controls is undertaken in order to demonstrate superior control performance of the proposed controller.

Improvement of the Response Characteristics Using the Fuzzy-PLL Controller (퍼지-PLL 제어기를 이용한 응답특성 개선)

  • Cho, Jeong-Hwan;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.175-181
    • /
    • 2005
  • This paper proposes the fuzzy-PLL control system for fast response time and precision control of automation systems. The conventional PLL has not only a jitter noise caused from such a demerit of the wide dead zone, but also a long delay interval that makes a high speed operation unable. In order to solve the problems, the proposed system, which provides the improvement in terms of the control region in high speed and precision control, first used the fuzzy control method for fast response time and when the error reaches the preset value, used the PLL method designing new PFD for precision control. The new designed multi-PFD improves the dead zone, jitter noise and response characteristics, which is consists of P-PFD(Positive edge triggered PFD) and N-PFD(Negative edge triggered PFD) and can improve response characteristics to increase PFD gain.

The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic (퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정)

  • Cho, Hyunji;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

The Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer and a Fuzzy Controller (적분 바이너리 관측기와 퍼지 제어기를 이용한 IPMSM 센서리스 속도제어)

  • Lee, Hyoung;Kang, Hyoung-Seok;Jeong, U-Taek;Kim, Young-Seok;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.925-926
    • /
    • 2006
  • This paper presents a sensorless speed control of an interior permanent magnet synchronous motor using an adaptive integral binary observer and fuzzy logic controller. In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. Also, because the conventional fixed gain PI controller are very sensitive to step change of command speed, parameter variations and load disturbance, the fuzzy logic controller is used to compensate a fixed gain PI controller. Therefore, a gain PI is fixed and the IPMSM is drived at another speed region. The effectiveness of the proposed the adaptive integral observer and the fuzzy logic controller are confirmed by experimental results.

  • PDF